发布网友 发布时间:2022-04-22 11:51
共2个回答
热心网友 时间:2023-09-30 02:03
微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的,主要内容包括极限、连续、可微和重积分,最重要的思想就是“微元”和“无限*近”。微积分是微分学和积分学的总称,微分学就是‘无线细分’,积分学就是‘无限求和’,无限就是极限,微积分的基础就是极限的思想。
微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。 它是其余科目的基础,是重中之中。它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中,有越来越广泛的作用。
微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
一元微分
定义: 设函数y = f(x)在某区间内有定义,x0及x0 + Δx在此区间内。如果函数的增量Δy = f(x0 + Δx) – f(x0)可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。 通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。 几何意义 设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。
多元微分
多元微分 多元微分又叫全微分,是由两个自变量的偏导数相对应的一元微分的增量表示的。 ΔZ=A*ΔX+B*ΔY+ο(ρ)为函数Z在点(x、y)处的全增量,(其中A、B不依赖于ΔX和ΔY,而只与x、y有关,ρ=[(x∧2+y∧2)]∧(1\2),A*ΔX+B*ΔY即是Z在点的全微分。总的来说,微分学的核心思想便是以直代曲,即在微小的邻域内,可以用一段切线段来代替曲线以简化计算过程。积分有两种:定积分和不定积分。定积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,定积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。
一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。
其中:[F(x) + C]' = f(x)
一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。 定积分和不定积分的定义迥然不同,定积分是求图形的面积,即是求微元元素的累加和,而不定积分则是求其原函数,它们又为何通称为积分呢?这要靠牛顿和莱布尼茨的贡献了,把本来毫不相关的两个事物紧密的联系起来了。详见牛顿——莱布尼茨公式。
一阶微分与高阶微分,函数一阶导数对应的微分称为一阶微分; 一阶微分的微分称为二阶微分; ....... n阶微分的微分称为(n+1)阶微分
即:d(n)y=f(n)(x)*dx^n (f(n)(x)指n阶导数,d(n)y指n阶微分,dx^n指dx的n次方) 含有未知函数yt=f(t)以及yt的差分Dyt, D2yt,…的函数方程,称为常差分方程(简称差分方程);出现在差分方程中的差分的最高阶数,称为差分方程的阶。n阶差分方程的一般形式为 F(t,yt,Dyt,…, Dnyt)=0, 其中F是t,yt, Dyt,…, Dnyt的已知函数,且Dnyt一定要在方程中出现。
含有两个或两个以上函数值yt,yt+1,…的函数方程,称为(常)差分方程,出现在差分方程中未知函数下标的最大差,称为差分方程的阶。n阶差分方程的一般形式为 F(t,yt,yt+1,…,yt+n)=0, 其中F为t,yt,yt+1,…,yt+n的已知函数,且yt和yt+n一定要在差分方程中出现。
常微分方程与偏微分方程的总称。含自变量、未知函数和它的微商(或偏微商)的方程称为常(或偏)微分方程。未知函数为一元函数的微分方程,称为常微分方程。未知函数为多元函,从而出现多元函数的偏导数的方程,称为偏微分方程。
热心网友 时间:2023-09-30 02:04
微积分是研究微分学和积分学的统称,英文名称是Calculus,意为计算。这是因为早期微积分主要用与天文、力学、几何学中的计算的问题。后来人们也将微积分称为分析学,或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问。极限是整个微积分学的基础。微分学包括求导和微分的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线斜率等均可用一套通用的符号进行讨论。积分学包括不定积分和定积分的概念和应用,为定义和计算面积、体积等提供一套通用的方法。