C语言,哪位好心的大哥,姐姐:能告述我位运算吗?我看不懂啊!
发布网友
发布时间:2022-04-22 11:30
我来回答
共6个回答
热心网友
时间:2023-11-03 08:15
位运算简介及实用技巧(一):基础篇
什么是位运算?
程序中的所有数在计算机内存中都是以二进制的形式储存的。位运算说穿了,就是直接对整数在内存中的二进制位进行操作。比如,and运算本来是一个逻辑运算符,但整数与整数之间也可以进行and运算。举个例子,6的二进制是110,11的二进制是1011,那么6 and 11的结果就是2,它是二进制对应位进行逻辑运算的结果(0表示False,1表示True,空位都当0处理):
110
AND 1011
---------------
0010 --> 2
由于位运算直接对内存数据进行操作,不需要转成十进制,因此处理速度非常快。当然有人会说,这个快了有什么用,计算6 and 11没有什么实际意义啊。这一系列的文章就将告诉你,位运算到底可以干什么,有些什么经典应用,以及如何用位运算优化你的程序。
Pascal和C中的位运算符号
下面的a和b都是整数类型,则:
C语言 | Pascal语言
-------+-------------
a & b | a and b
a | b | a or b
a ^ b | a xor b
~a | not a
a << b| a shl b
a >> b | a shr b
注意C中的逻辑运算和位运算符号是不同的。520|1314=1834,但520||1314=1,因为逻辑运算时520和1314都相当于True。同样的,!a和~a也是有区别的。
各种位运算的使用
=== 1. and运算 ===
and运算通常用于二进制取位操作,例如一个数 and 1的结果就是取二进制的最末位。这可以用来判断一个整数的奇偶,二进制的最末位为0表示该数为偶数,最末位为1表示该数为奇数.
=== 2. or运算 ===
or运算通常用于二进制特定位上的无条件赋值,例如一个数or 1的结果就是把二进制最末位强行变成1。如果需要把二进制最末位变成0,对这个数or 1之后再减一就可以了,其实际意义就是把这个数强行变成最接近的偶数。
=== 3. xor运算 ===
xor运算通常用于对二进制的特定一位进行取反操作,因为异或可以这样定义:0和1异或0都不变,异或1则取反。
xor运算的逆运算是它本身,也就是说两次异或同一个数最后结果不变,即(a xor b) xor b = a。xor运算可以用于简单的加密,比如我想对我MM说1314520,但怕别人知道,于是双方约定拿我的生日19880516作为密钥。1314520 xor 19880516 = 20665500,我就把20665500告诉MM。MM再次计算20665500 xor 19880516的值,得到1314520,于是她就明白了我的企图。
下面我们看另外一个东西。定义两个符号#和@(我怎么找不到那个圈里有个叉的字符),这两个符号互为逆运算,也就是说(x # y) @ y = x。现在依次执行下面三条命令,结果是什么?
x <- x # y
y <- x @ y
x <- x @ y
执行了第一句后x变成了x # y。那么第二句实质就是y <- x # y @ y,由于#和@互为逆运算,那么此时的y变成了原来的x。第三句中x实际上被赋值为(x # y) @ x,如果#运算具有交换律,那么赋值后x就变成最初的y了。这三句话的结果是,x和y的位置互换了。
加法和减法互为逆运算,并且加法满足交换律。把#换成+,把@换成-,我们可以写出一个不需要临时变量的swap过程(Pascal)。
procere swap(var a,b:longint);
begin
a:=a + b;
b:=a - b;
a:=a - b;
end;
好了,刚才不是说xor的逆运算是它本身吗?于是我们就有了一个看起来非常诡异的swap过程:
procere swap(var a,b:longint);
begin
a:=a xor b;
b:=a xor b;
a:=a xor b;
end;
=== 4. not运算 ===
not运算的定义是把内存中的0和1全部取反。使用not运算时要格外小心,你需要注意整数类型有没有符号。如果not的对象是无符号整数(不能表示负数),那么得到的值就是它与该类型上界的差,因为无符号类型的数是用00到$FFFF依次表示的。下面的两个程序(仅语言不同)均返回65435。
var
a:word;
begin
a:=100;
a:=not a;
writeln(a);
end.
#include <stdio.h>
int main()
{
unsigned short a=100;
a = ~a;
printf( "%d\n", a );
return 0;
}
如果not的对象是有符号的整数,情况就不一样了,稍后我们会在“整数类型的储存”小节中提到。
=== 5. shl运算 ===
a shl b就表示把a转为二进制后左移b位(在后面添b个0)。例如100的二进制为1100100,而110010000转成十进制是400,那么100 shl 2 = 400。可以看出,a shl b的值实际上就是a乘以2的b次方,因为在二进制数后添一个0就相当于该数乘以2。
通常认为a shl 1比a * 2更快,因为前者是更底层一些的操作。因此程序中乘以2的操作请尽量用左移一位来代替。
定义一些常量可能会用到shl运算。你可以方便地用1 shl 16 - 1来表示65535。很多算法和数据结构要求数据规模必须是2的幂,此时可以用shl来定义Max_N等常量。
=== 6. shr运算 ===
和shl相似,a shr b表示二进制右移b位(去掉末b位),相当于a除以2的b次方(取整)。我们也经常用shr 1来代替div 2,比如二分查找、堆的插入操作等等。想办法用shr代替除法运算可以使程序效率大大提高。最大公约数的二进制算法用除以2操作来代替慢得出奇的mod运算,效率可以提高60%。
位运算的简单应用
有时我们的程序需要一个规模不大的Hash表来记录状态。比如,做数独时我们需要27个Hash表来统计每一行、每一列和每一个小九宫格里已经有哪些数了。此时,我们可以用27个小于2^9的整数进行记录。例如,一个只填了2和5的小九宫格就用数字18表示(二进制为000010010),而某一行的状态为511则表示这一行已经填满。需要改变状态时我们不需要把这个数转成二进制修改后再转回去,而是直接进行位操作。在搜索时,把状态表示成整数可以更好地进行判重等操作。这道题是在搜索中使用位运算加速的经典例子。以后我们会看到更多的例子。
下面列举了一些常见的二进制位的变换操作。
功能 | 示例 | 位运算
----------------------+---------------------------+--------------------
去掉最后一位 | (101101->10110) | x shr 1
在最后加一个0 | (101101->1011010) | x shl 1
在最后加一个1 | (101101->1011011) | x shl 1+1
把最后一位变成1 | (101100->101101) | x or 1
把最后一位变成0 | (101101->101100) | x or 1-1
最后一位取反 | (101101->101100) | x xor 1
把右数第k位变成1 | (101001->101101,k=3) | x or (1 shl (k-1))
把右数第k位变成0 | (101101->101001,k=3) | x and not (1 shl (k-1))
右数第k位取反 | (101001->101101,k=3) | x xor (1 shl (k-1))
取末三位 | (1101101->101) | x and 7
取末k位 | (1101101->1101,k=5) | x and (1 shl k-1)
取右数第k位 | (1101101->1,k=4) | x shr (k-1) and 1
把末k位变成1 | (101001->101111,k=4) | x or (1 shl k-1)
末k位取反 | (101001->100110,k=4) | x xor (1 shl k-1)
把右边连续的1变成0 | (100101111->100100000) | x and (x+1)
把右起第一个0变成1 | (100101111->100111111) | x or (x+1)
把右边连续的0变成1 | (11011000->11011111) | x or (x-1)
取右边连续的1 | (100101111->1111) | (x xor (x+1)) shr 1
去掉右起第一个1的左边 | (100101000->1000) | x and (x xor (x-1))
最后这一个在树状数组中会用到。
Pascal和C中的16进制表示
Pascal中需要在16进制数前加$符号表示,C中需要在前面加0x来表示。这个以后我们会经常用到。
整数类型的储存
我们前面所说的位运算都没有涉及负数,都假设这些运算是在unsigned/word类型(只能表示正数的整型)上进行操作。但计算机如何处理有正负符号的整数类型呢?下面两个程序都是考察16位整数的储存方式(只是语言不同)。
var
a,b:integer;
begin
a:=00;
b:=01;
write(a,' ',b,' ');
a:=$FFFE;
b:=$FFFF;
write(a,' ',b,' ');
a:=FFF;
b:=00;
writeln(a,' ',b);
end.
#include <stdio.h>
int main()
{
short int a, b;
a = 0x0000;
b = 0x0001;
printf( "%d %d ", a, b );
a = 0xFFFE;
b = 0xFFFF;
printf( "%d %d ", a, b );
a = 0x7FFF;
b = 0x8000;
printf( "%d %d\n", a, b );
return 0;
}
两个程序的输出均为0 1 -2 -1 32767 -32768。其中前两个数是内存值最小的时候,中间两个数则是内存值最大的时候,最后输出的两个数是正数与负数的分界处。由此你可以清楚地看到计算机是如何储存一个整数的:计算机用00到FFF依次表示0到32767的数,剩下的00到$FFFF依次表示-32768到-1的数。32位有符号整数的储存方式也是类似的。稍加注意你会发现,二进制的第一位是用来表示正负号的,0表示正,1表示负。这里有一个问题:0本来既不是正数,也不是负数,但它占用了00的位置,因此有符号的整数类型范围中正数个数比负数少一个。对一个有符号的数进行not运算后,最高位的变化将导致正负颠倒,并且数的绝对值会差1。也就是说,not a实际上等于-a-1。这种整数储存方式叫做“补码”。
位运算简介及实用技巧(二):进阶篇(1)
===== 真正强的东西来了! =====
二进制中的1有奇数个还是偶数个
我们可以用下面的代码来计算一个32位整数的二进制中1的个数的奇偶性,当输入数据的二进制表示里有偶数个数字1时程序输出0,有奇数个则输出1。例如,1314520的二进制101000000111011011000中有9个1,则x=1314520时程序输出1。
var
i,x,c:longint;
begin
readln(x);
c:=0;
for i:=1 to 32 do
begin
c:=c + x and 1;
x:=x shr 1;
end;
writeln( c and 1 );
end.
但这样的效率并不高,位运算的神奇之处还没有体现出来。
同样是判断二进制中1的个数的奇偶性,下面这段代码就强了。你能看出这个代码的原理吗?
var
x:longint;
begin
readln(x);
x:=x xor (x shr 1);
x:=x xor (x shr 2);
x:=x xor (x shr 4);
x:=x xor (x shr 8);
x:=x xor (x shr 16);
writeln(x and 1);
end.
为了说明上面这段代码的原理,我们还是拿1314520出来说事。1314520的二进制为101000000111011011000,第一次异或操作的结果如下:
00000000000101000000111011011000
XOR 0000000000010100000011101101100
---------------------------------------
00000000000111100000100110110100
得到的结果是一个新的二进制数,其中右起第i位上的数表示原数中第i和i+1位上有奇数个1还是偶数个1。比如,最右边那个0表示原数末两位有偶数个1,右起第3位上的1就表示原数的这个位置和前一个位置中有奇数个1。对这个数进行第二次异或的结果如下:
00000000000111100000100110110100
XOR 000000000001111000001001101101
---------------------------------------
00000000000110011000101111011001
结果里的每个1表示原数的该位置及其前面三个位置*有奇数个1,每个0就表示原数对应的四个位置上共偶数个1。一直做到第五次异或结束后,得到的二进制数的最末位就表示整个32位数里有多少个1,这就是我们最终想要的答案。
计算二进制中的1的个数
同样假设x是一个32位整数。经过下面五次赋值后,x的值就是原数的二进制表示中数字1的个数。比如,初始时x为1314520(网友抓狂:能不能换一个数啊),那么最后x就变成了9,它表示1314520的二进制中有9个1。
x := (x and 555555) + ((x shr 1) and 555555);
x := (x and 333333) + ((x shr 2) and 333333);
x := (x and F0F0F0F) + ((x shr 4) and F0F0F0F);
x := (x and FF00FF) + ((x shr 8) and FF00FF);
x := (x and 00FFFF) + ((x shr 16) and 00FFFF);
为了便于解说,我们下面仅说明这个程序是如何对一个8位整数进行处理的。我们拿数字211(我们班某MM的生日)来开刀。211的二进制为11010011。
+---+---+---+---+---+---+---+---+
| 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | <---原数
+---+---+---+---+---+---+---+---+
| 1 0 | 0 1 | 0 0 | 1 0 | <---第一次运算后
+-------+-------+-------+-------+
| 0 0 1 1 | 0 0 1 0 | <---第二次运算后
+---------------+---------------+
| 0 0 0 0 0 1 0 1 | <---第三次运算后,得数为5
+-------------------------------+
整个程序是一个分治的思想。第一次我们把每相邻的两位加起来,得到每两位里1的个数,比如前两位10就表示原数的前两位有2个1。第二次我们继续两两相加,10+01=11,00+10=10,得到的结果是00110010,它表示原数前4位有3个1,末4位有2个1。最后一次我们把0011和0010加起来,得到的就是整个二进制中1的个数。程序中巧妙地使用取位和右移,比如第二行中333333的二进制为00110011001100....,用它和x做and运算就相当于以2为单位间隔取数。shr的作用就是让加法运算的相同数位对齐。
二分查找32位整数的前导0个数
这里用的C语言,我直接Copy的Hacker's Delight上的代码。这段代码写成C要好看些,写成Pascal的话会出现很多begin和end,搞得代码很难看。程序思想是二分查找,应该很简单,我就不细说了。
int nlz(unsigned x)
{
int n;
if (x == 0) return(32);
n = 1;
if ((x >> 16) == 0) {n = n +16; x = x <<16;}
if ((x >> 24) == 0) {n = n + 8; x = x << 8;}
if ((x >> 28) == 0) {n = n + 4; x = x << 4;}
if ((x >> 30) == 0) {n = n + 2; x = x << 2;}
n = n - (x >> 31);
return n;
}
只用位运算来取绝对值
这是一个非常有趣的问题。大家先自己想想吧,Ctrl+A显示答案。
答案:假设x为32位整数,则x xor (not (x shr 31) + 1) + x shr 31的结果是x的绝对值
x shr 31是二进制的最高位,它用来表示x的符号。如果它为0(x为正),则not (x shr 31) + 1等于000000,异或任何数结果都不变;如果最高位为1(x为负),则not (x shr 31) + 1等于$FFFFFFFF,x异或它相当于所有数位取反,异或完后再加一。
高低位交换
这个题实际上是我出的,做为学校内部NOIp模拟赛的第一题。题目是这样:
给出一个小于2^32的正整数。这个数可以用一个32位的二进制数表示(不足32位用0补足)。我们称这个二进制数的前16位为“高位”,后16位为“低位”。将它的高低位交换,我们可以得到一个新的数。试问这个新的数是多少(用十进制表示)。
例如,数1314520用二进制表示为0000 0000 0001 0100 0000 1110 1101 1000(添加了11个前导0补足为32位),其中前16位为高位,即0000 0000 0001 0100;后16位为低位,即0000 1110 1101 1000。将它的高低位进行交换,我们得到了一个新的二进制数0000 1110 1101 1000 0000 0000 0001 0100。它即是十进制的249036820。
当时几乎没有人想到用一句位操作来代替冗长的程序。使用位运算的话两句话就完了。
var
n:dword;
begin
readln( n );
writeln( (n shr 16) or (n shl 16) );
end.
而事实上,Pascal有一个系统函数swap直接就可以用。
二进制逆序
下面的程序读入一个32位整数并输出它的二进制倒序后所表示的数。
输入: 1314520 (二进制为00000000000101000000111011011000)
输出: 460335104 (二进制为00011011011100000010100000000000)
var
x:dword;
begin
readln(x);
x := (x and 555555) shl 1 or (x and $AAAAAAAA) shr 1;
x := (x and 333333) shl 2 or (x and $CCCCCCCC) shr 2;
x := (x and F0F0F0F) shl 4 or (x and $F0F0F0F0) shr 4;
x := (x and FF00FF) shl 8 or (x and $FF00FF00) shr 8;
x := (x and 00FFFF) shl 16 or (x and $FFFF0000) shr 16;
writeln(x);
end.
它的原理和刚才求二进制中1的个数那个例题是大致相同的。程序首先交换每相邻两位上的数,以后把互相交换过的数看成一个整体,继续进行以2位为单位、以4位为单位的左右对换操作。我们再次用8位整数211来演示程序执行过程:
+---+---+---+---+---+---+---+---+
| 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | <---原数
+---+---+---+---+---+---+---+---+
| 1 1 | 1 0 | 0 0 | 1 1 | <---第一次运算后
+-------+-------+-------+-------+
| 1 0 1 1 | 1 1 0 0 | <---第二次运算后
+---------------+---------------+
| 1 1 0 0 1 0 1 1 | <---第三次运算后
+-------------------------------+
位运算简介及实用技巧(三):进阶篇(2)
今天我们来看两个稍微复杂一点的例子。
n皇后问题位运算版
n皇后问题是啥我就不说了吧,学编程的肯定都见过。下面的十多行代码是n皇后问题的一个高效位运算程序,看到过的人都夸它牛。初始时,upperlim:=(1 shl n)-1。主程序调用test(0,0,0)后sum的值就是n皇后总的解数。拿这个去交USACO,0.3s,暴爽。
procere test(row,ld,rd:longint);
var
pos,p:longint;
begin
if row<>upperlim then
begin
pos:=upperlim and not (row or ld or rd);
while pos<>0 do
begin
p:=pos and -pos;
pos:=pos-p;
test(row+p,(ld+p)shl 1,(rd+p)shr 1);
end;
end
else inc(sum);
end;
乍一看似乎完全摸不着头脑,实际上整个程序是非常容易理解的。这里还是建议大家自己单步运行一探究竟,实在没研究出来再看下面的解说。
和普通算法一样,这是一个递归过程,程序一行一行地寻找可以放皇后的地方。过程带三个参数,row、ld和rd,分别表示在纵列和两个对角线方向的*条件下这一行的哪些地方不能放。我们以6x6的棋盘为例,看看程序是怎么工作的。假设现在已经递归到第四层,前三层放的子已经标在左图上了。红色、蓝色和绿色的线分别表示三个方向上有冲突的位置,位于该行上的冲突位置就用row、ld和rd中的1来表示。把它们三个并起来,得到该行所有的禁位,取反后就得到所有可以放的位置(用pos来表示)。前面说过-a相当于not a + 1,这里的代码第6行就相当于pos and (not pos + 1),其结果是取出最右边的那个1。这样,p就表示该行的某个可以放子的位置,把它从pos中移除并递归调用test过程。注意递归调用时三个参数的变化,每个参数都加上了一个禁位,但两个对角线方向的禁位对下一行的影响需要平移一位。最后,如果递归到某个时候发现row=111111了,说明六个皇后全放进去了,此时程序从第1行跳到第11行,找到的解的个数加一。
~~~~====~~~~===== 华丽的分割线 =====~~~~====~~~~
Gray码
假如我有4个潜在的GF,我需要决定最终到底和谁在一起。一个简单的办法就是,依次和每个MM交往一段时间,最后选择给我带来的“满意度”最大的MM。但看了dd牛的理论后,事情开始变得复杂了:我可以选择和多个MM在一起。这样,需要考核的状态变成了2^4=16种(当然包括0000这一状态,因为我有可能是玻璃)。现在的问题就是,我应该用什么顺序来遍历这16种状态呢?
传统的做法是,用二进制数的顺序来遍历所有可能的组合。也就是说,我需要以0000->0001->0010->0011->0100->...->1111这样的顺序对每种状态进行测试。这个顺序很不科学,很多时候状态的转移都很耗时。比如从0111到1000时我需要暂时甩掉当前所有的3个MM,然后去把第4个MM。同时改变所有MM与我的关系是一件何等巨大的工程啊。因此,我希望知道,是否有一种方法可以使得,从没有MM这一状态出发,每次只改变我和一个MM的关系(追或者甩),15次操作后恰好遍历完所有可能的组合(最终状态不一定是1111)。大家自己先试一试看行不行。
解决这个问题的方法很巧妙。我们来说明,假如我们已经知道了n=2时的合法遍历顺序,我们如何得到n=3的遍历顺序。显然,n=2的遍历顺序如下:
00
01
11
10
你可能已经想到了如何把上面的遍历顺序扩展到n=3的情况。n=3时一共有8种状态,其中前面4个把n=2的遍历顺序照搬下来,然后把它们对称翻折下去并在最前面加上1作为后面4个状态:
000
001
011
010 ↑
--------
110 ↓
111
101
100
热心网友
时间:2023-11-03 08:15
异或就是两个数一样就是0
两个数不一样就是1
热心网友
时间:2023-11-03 08:16
你就记住位异或就是:两个二进制数相加不进位就行了
热心网友
时间:2023-11-03 08:17
(5)10=(101)2
(9)10=(1001)2
5|9对应的位做或运算,即 1|0=1 0|1=1 1|1=1 0|0=0
所以5|9=(1101)2
同理异或就是相等为0,不等为1
1^1=0,0^0=0,1^0=1,0^1=1
所以5^9=(1100)2=(12)10
热心网友
时间:2023-11-03 08:17
位运算就是二进制的一个计算方式,其实很简单的
就是个很简单的逻辑运算,两个值之间按照不同的方式的进行运算。
异或很简单,也就是两个位相同那么结果就是0,如果两个位不同,那么结果就是1.
这个知识在高中的时候就有过学习,在逻辑那章,只不过没有明显的讲到用于计算机上,建议去看下《离散数学》的第一章,关于逻辑的运算
如果还不明白,你就记得你教材上的所有运算的结果就可以了,因为结果就只有那么几种
热心网友
时间:2023-11-03 08:18
这是计算机机器码的运算方式比如异或 1异或0=1 1异或1=1 0异或0=0
参考c语言教材谭浩强第2版第12张有详细介绍。
C语言,哪位好心的大哥,姐姐:能告述我位运算吗?我看不懂啊!
位运算说穿了,就是直接对整数在内存中的二进制位进行操作。比如,and运算本来是一个逻辑运算符,但整数与整数之间也可以进行and运算。举个例子,6的二进制是110,11的二进制是1011,那么6 and 11的结果就是2,它是二进制对应位进行逻辑运算的结果(0表示False,1表示True,空位都当0处理): 110 AND 1011 --- 0010 ...
好心人帮我解释一下c语言中的位运算
在C语言中,&代表按位与操作。比如我们有a = 2 & 1,先将2和1转化为二进制形式,即00000010和00000001,进行按位与操作后得到的结果是00000000。这里的关键在于理解运算符的优先级。例如,~(按位取反)的操作优先级高于<<(左移位),所以在执行x << (p+1-n)时,首先会计算~0<,这里~0表...
c语言中的位运算符中‘按位取反’是怎么运算的,什么是负数的反码,请各...
反码是:符号位为1,其余各位求反,但末位不加1 也就是说,反码末位加上1就是补码 1100110011 原 1011001100 反 除符号位,按位取反 1011001101 补 除符号位,按位取反再加1 正数的原反补是一样的 在计算机中,数据是以补码的形式存储的:在n位的机器数中,最高位为符号位,该位为零表示为正,为...
c语言中的一句话,谁告诉我是什么意思
P1=a|b的意思是:把变量a 和变量b进行逻辑或运算,把结果输出到P1口。
C语言位运算64左移3结果是512这是怎么运算的我该怎么理解
左移一位就是乘以2,移三位就是乘以8了。
怎样学好c语言,那些符号什么的看不懂啊
C语言的关键之少,运算符多。运算符有算术运算、位运算、逻辑运算等,有单目、双目、三目运算,有优先级之分。加上C语法的灵活性,同样的代码在不同编译器上的解释都可能不一样,就是老程序员也未必能弄清楚。优先级 运算符 名称或含义 使用形式 结合方向 说明 1 []数组下标 数组名[常量表达式]...
C语言中位运算求八进制数的补码下面是程序但是看不懂
short是2个字节,也就是16位 scanf("%o",&a);在命令行窗口输入8进制数保存给变量a 0100000的二进制形式为最高位为1,其余为0,也就是说与其与运算之后,结果的二进制最高位为1则a为负数,下面的判断就是分为正负数两种情况 if(z==0100000)/*如果a小于0*/ z=~a+1;/*取反加1*/ else z...
请问c语言的位运算中,变量a中的数据用二进制表示的形式为01011101,那么...
a<<4就是将a中的数左移4位,右边补0,左边扔掉,即a<<4的结果是11010000,若是a<<1,则为1011100。a<
帮忙解释一下c语言里的<< >>英文叫left shift ,right shift,先告诉我他...
<<是左移 >>是右移 位运算。大部分时候,左移几位,就是数值做几次方,右移几位,就是对2的几次方做整除 具体的你查阅一下c语言课本中的位运算那一章,需要配合整型数据在内存中的存储形式,说白了就是原码反码补码这一块的内容查阅
如何自学C语言?高手进来传授一下学习经验
5、预编译处理:C语言中只需要重点了解define的用法就行了,其他不是问题 6、结构体、共用体和用户自定义内型:结构体实际上就是“结构化”了的数组,其中每个元素还是和普通变量没多少区别,学好结构体是学习C++的基础,而且只要学好了数组那章,应该说这章是小菜一碟。7、位运算:2级基本不考,位...