问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

拉普拉斯方程狄氏问题的格林函数是怎么定义的

发布网友 发布时间:2022-06-28 22:21

我来回答

1个回答

热心网友 时间:2023-11-01 22:27

拉普拉斯方程表示液面曲率与液体压力之间的关系的公式。一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相重合的圆半径称为该曲线的曲率半径R1。通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用 R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压力p1与液体外的压力p2就会不同,在液面两边就会产生压力差△P= P1- P2,其数值与液面曲率大小有关,可表示为:▽p=γ(1/R1+1/R2)式中γ是液体表面张力。该公式成为拉普拉斯方程。
在数理方程中
拉普拉斯方程为:▽u=d^2u/dx^2+d^2u/dy^2=0,其中 ▽ 为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ :   其中 ▽ 称为拉普拉斯算子.   拉普拉斯方程的解称为调和函数。   如果等号右边是一个给定的函数f(x, y, z),即:   则该方程称为泊松方程。 拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。偏微分算子或 ▽(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是 Laplace operator 或简称作 Laplacian。
狄利克雷问题
拉普拉斯方程的狄利克雷问题可归结为求解在区域D内定义的函数φ,使得在D的边界上等于某给定的函数。为方便叙述,以下采用拉普拉斯算子应用的其中一个例子——热传导问题作为背景进行介绍:固定区域边界上的温度(是边界上各点位置坐标的函数),直到区域内部热传导使温度分布达到稳定,这个温度分布场就是相应的狄利克雷问题的解。
诺伊曼边界条件
拉普拉斯方程的诺伊曼边界条件不直接给出区域D边界处的温度函数φ本身,而是φ沿D的边界法向的导数。从物理的角度看,这种边界条件给出的是矢量场的势分布在区域边界处的已知效果(对热传导问题而言,这种效果便是边界热流密度)。
拉普拉斯方程的解
称为调和函数,此函数在方程成立的区域内是解析的。任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。这种非常有用的性质称为叠加原理。可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。
编辑本段二维拉普拉斯方程
两个自变量的拉普拉斯方程具有以下形式:   函数h (x,y) 为二元函数,h(x,y) 对x的二阶偏导数 + h(x,y)对y的二阶偏导数 = 0
解析函数
解析函数的实部和虚部均满足拉普拉斯方程。换言之,若z = x + iy,并且   那么f(z)是解析函数的充要条件是它满足下列柯西-黎曼方程:f(z) = u(x,y) + iv(x ,y)   u 对x的偏导数 = v 对y 的偏导数 , u 对y 的偏导数 = - (v 对 x 的偏导数)   上述方程继续 求导就得到   所以u 满足拉普拉斯方程。类似的计算可推得v 同样满足拉普拉斯方程。   反之,给定一个由解析函数(或至少在某点及其邻域内解析的函数)f(z)的实部确定的调和函数,若写成下列形式:   则等式   成立就可使得柯西-黎曼方程得到满足。 上述关系无法确定ψ,只能得到它的微增量表达式:   φ满足拉普拉斯方程意味着ψ满足可积条件:   所以可以通过一个线积分来定义ψ。可积条件和斯托克斯定理的满足说明线积分的结果与积分经过的具体路径无关,仅由起点和终点决定。于是,我们便通过复变函数方法得到了φ和ψ这一对拉普拉斯方程的解。这样的解称为一对共轭调和函数。这种构造解的方法只在局部(复变函数f(z))的解析域内)有效,或者说,构造函数的积分路径不能围绕有f(z)的奇点。譬如,在极坐标平面(r,θ)上定义函数   那么相应的解析函数为   在这里需要注意的是,极角θ 仅在不包含原点的区域内才是单值的。   拉普拉斯方程与解析函数之间的紧密联系说明拉普拉斯方程的任何解都无穷阶可导(这是解析函数的一个性质),因此可以展开成幂级数形式,至少在不包含奇点的圆域内是如此。这与波动方程的解形成鲜明对照,后者包含任意函数,其中一些的可微分阶数是很小的。   幂级数和傅里叶级数之间存在着密切的关系。如果我们将函数f 在复平面上以原点为中心,R 为半径的圆域内展开成幂级数,即   将每一项系数适当地分离出实部和虚部   那么   这便是f 的傅里叶级数。
三维情况下
拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ :   上面的方程常常简写作:   或
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
水笔在手上画画会不会被衣服搽掉下来 老人每天大便次数很多量不多也不稀,每天还会拉三四次水应经三个月了... 从大连飞机场怎么去大连经济开发区5彩城K区的大连金港大酒店 除了打 ... 请问从大连周水子国际机场到经济技术开发区怎么走最省钱? 中国古代名刀总录中国古代十大名刀 怎样把qq安装到iphone里面 苏科大什么梗 苏科大叫什么名字 lol苏科大是苏州科技大学的吗 lol苏州科技大学为什么这么厉害 优尔精医用降温贴是不是保健品? 已知平面调和场的力函数u=x^2-y^2+xy,求场的势函数v及场矢量a的解法 调和函数在什么条件下在全区域内为0 什么叫做调和场? 调和场是什么?如何证明一个向量场是调和场? 鱼塘喂了牛粪天天死鱼应该怎么控制,请教各位 数学的图形的计算公式 求一些图形的计算公式,比如三角形的如何求面积,体积,要容易懂点的 兽霸皮鞋怎么看是真皮 跌水景观中水渠溢水口是什么? 净水机溢水口什么意思- 问一问 溢水口100*50是什么意思 软文广告怎么写 一首曲子 今年,市面上出现许多"大小八卦图案涂点内裤",穿过身上起红点,经常噼里啪啦放电,是杂咋回事? 当兵需要带点什么…可以具体点吗? 女人送男人内衣是什么含义? 都结婚了,老婆总是喜欢露点点内裤或者胸带! 穿什么内衣对25岁左右的女人身材好点呢? 女孩子被刑事拘留了!能送点内衣内裤进去给她换洗吗?谢谢! 367÷4的竖式怎么写? 成都普赛信gps定位器怎么用- 问一问 南拳妈妈第一代&第二代是怎么回事?分别与周杰伦的关系? sara jay 有人喜欢吗 哪位大内高手能把JAY的《发如雪》歌词翻译成英文? 下载手机微信上面打字的 homedepot怎么上传产品 《暴君刘璋》txt下载在线阅读全文,求百度网盘云资源 求小说,穿越古代争霸文,详细条件如下 暴君刘璋_by不死奸臣_txt全文阅读,百度网盘免费下载 暴君刘璋_by不死奸臣_txt全文免费阅读 网上申请信用卡容易通过还是去网点申请容易过? 为什么在街上办信用卡比网上办容易下卡 Elionore 怎么读 车借给别人酒驾了怎么取车 车借朋友酒驾,责任如何认定? 朋友借我车酒驾车被扣了怎么办 cdr再制怎么弄 coreldRAW怎样弹出"再制距离"对话框? 广信通短信平台与SN有冲突吗 武汉的中国商务短信群发中心的短信群发到达率高吗?