发布网友 发布时间:2022-07-06 23:34
共5个回答
热心网友 时间:2022-07-15 11:23
是的。
空集(指不含任何元素的集合)是任何集合的子集,是任何非空集合的真子集。空集不是无;它是内部没有元素的集合。可以将集合想象成一个装有元素的袋子,而空集的袋子是空的,但袋子本身确实是存在的。
空集用符号Ø或者{ }表示。注意:{Ø}是有一个Ø元素的集合,而不是空集。
根据定义,空集有 0 个元素,或者称其势为 0。然而,这两者的关系可能更进一步:在标准的自然数的集合论定义中,0 被定义为空集。实数0与空集是两个不同的概念,不能把0或{0}与Ø混为一谈。
也就是说,空集并不是没有,他是有元素的,只不过他的元素比较特殊,是0,而不是我们平时所指的其他元素。
扩展资料:
对任意集合 A,空集是 A 的子集:∀A:Ø ⊆ A。
对任意集合 A,空集和 A 的并集为 A:∀A:A ∪ Ø = A。
对任意非空集合 A,空集是 A的真子集:∀A,,,若A≠Ø,则Ø 真包含于 A。
对任意集合 A,空集和 A 的交集为空集:∀A,A ∩ Ø = Ø。
对任意集合 A,空集和 A 的笛卡尔积为空集:∀A,A × Ø = Ø。
空集的唯一子集是空集本身:∀A,若 A ⊆ Ø ⊆ A,则 A= Ø;∀A,若A= Ø,则A ⊆ Ø ⊆ A。
空集的元素个数(即它的势)为零。
特别的,空集是有限的:| Ø | = 0。
对于全集,空集的补集为全集:CUØ=U。
集合论中,若两个集合有相同的元素,则它们相等。那么,所有的空集都是相等的,即空集是唯一的。
参考资料:百度百科-空集
热心网友 时间:2022-07-15 11:23
空集是任何一个集合的子集,是任何一个非空集的真子集。
某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。
注意:{Ø}是有一个Ø元素的集合,而不是空集。
空集举例:
1、当两圆相离时,它们的公共点所组成的集合就是空集;
2、当一元二次方程的根的判别式值△<0时,它的实数根所组成的集合也是空集。
性质
1、对于全集,空集的补集为全集:CUØ=U。
2、对任意集合 A,空集和 A 的并集为 A:∀A:A ∪ Ø = A;
3、对任意非空集合 A,空集是 A的真子集:∀A,,,若A≠Ø,则Ø 真包含于 A。
4、对任意集合 A,空集和 A 的交集为空集:∀A,A ∩ Ø = Ø;
5、对任意集合 A,空集和 A 的笛卡尔积为空集:∀A,A × Ø = Ø;
6、空集的唯一子集是空集本身:∀A,若 A ⊆ Ø ⊆ A,则 A= Ø;∀A,若A= Ø,则A ⊆ Ø ⊆ A。
7、空集的元素个数(即它的势)为零;
8、特别的,空集是有限的:| Ø | = 0;
参考资料来源:百度百科——空集
热心网友 时间:2022-07-15 11:24
不是,只能说是任何集合的子集热心网友 时间:2022-07-15 11:24
不是,空集是任何非空集的真子集。如果空集是任何集合的真子集,那么A=∅时,空集是A的子集,A是空集的子集,那么空集就不是A的真子集了。热心网友 时间:2022-07-15 11:25
因为“任何集合”的说法中就包含空集,而真子集的定义说,如果集合A中的任意一个元素都属于集合B,且集合B中存在一个元素不属于集合A,而空集是任何非空集合的真子集,空集是空集的子集,或是等集,不是真子集。