发布网友 发布时间:2022-04-22 09:57
共3个回答
热心网友 时间:2023-10-05 18:18
对勾函数:图像,性质,单调性
对勾函数是数学中一种常见而又特殊的函数,见图示。 对勾函数是一种类似于反比例函数的一般函数,又被称为“双勾函数”、"勾函数"等。也被形象称为“耐克函数” 所谓的对勾函数(双曲线函数),是形如f(x)=ax+b/x的函数。由图像得名。 当x>0时,f(x)=ax+b/x有最小值(这里为了研究方便,规定a>0,b>0),也就是当x=sqrt(b/a)的时候(sqrt表示求二次方根) 奇函数。 令k=sqrt(b/a),那么: 增区间:{x|x≤-k}和{x|x≥k}; 减区间:{x|-k≤x<0}和{x|0<x≤k} 变化趋势:在y轴左边,增减,在y轴右边,减增,是两个勾。
编辑本段均值不等式
对勾函数性质的研究离不开均值不等式。说到均值不等式,其实也是根据二次函数得来的。我们都知道,(a-b)^2≥0,展开就是a^2-2ab+b^2≥0,有a^2+b^2≥2ab,两边同时加上2ab,整理得到(a+b)^2≥4ab,同时开根号,就得到了平均值定理的公式:a+b≥2sqrt(ab)。现在把ax+b/x套用这个公式,得到ax+b/x≥2sqrt(axb/x)=2sqrt(ab),这里有个规定:当且仅当ax=b/x时取到最小值,解出x=sqrt(b/a),对应的f(x)=2sqrt(ab)。我们再来看看均值不等式,它也可以写成这样:(a+b)/2≥sqrt(ab),前式大家都知道,是求平均数的公式。那么后面的式子呢?也是平均数的公式,但不同的是,前面的称为算术平均数,而后面的则称为几何平均数,总结一下就是算术平均数绝对不会小于几何平均数。这些知识点也是非常重要的。
编辑本段导数求解
其实用导数也可以研究对勾函数的性质。不过首先要会负指数幂的换算,这也很简单,但要熟练掌握。举几个例子:1/x=x^-1,4/x^2=4x^-2。明白了吧,x为分母的时候可以转化成负指数幂。那么就有f(x)=ax+b/x=ax+bx^-1,求导方法一样,求的的导函数为a+(-b)x^-2,令f'(x)=0,计算得到b=ax2,结果仍然是x=sqrt(b/a),如果需要的话算出f(x)就行了。平时做题的时候用导数还是均值定理,就看你喜欢用那个了。不过注意均值定理最后的讨论,有时ax≠b/x,就不能用均值定理了。 上述研究都是建立在x>0的基础上的,不过对勾函数是奇函数,所以研究出正半轴图像的性质后,自然能补出对称的图像。如果出现平移了的问题(图像不再规则),就先用平移公式或我总结出的平移规律还原以后再研究,这个能力非常重要,一定要多练,争取做到特别熟练的地步。 对勾函数实际是反比例函数的一个延伸,对勾函数y=ax+(b/x)还有两条渐近线:x=0(即y轴)和y=ax,至于它是不是双曲线还众说不一。
编辑本段其它解法
面对这个函数 f(x)=ax+b/x, 我们应该想得更多,需要我们深入探究:(1)它的单调性与奇偶性有何应用?而值域问题恰好与单调性密切相关,所以命题者首先想到的问题应该与值域有关;(2)函数与方程之间有密切的联系,所以命题者自然也会想到函数与方程思想的运用;(3)众所周知,双曲线中存在很多定值问题,所以很容易就想到定值的存在性问题。因此就由特殊引出了一般结论;继续拓展下去,用所猜想、探索的结果来解决较为复杂的函数最值问题。
编辑本段高考例题
2006年高考上海数学试卷(理工农医类)已知函数 y=x+a/x 有如下性质:如果常数a>0,那么该函数在 (0,√a] 上是减函数,在 ,[√a,+∞ )上是增函数. (1)如果函数 y=x+(2^b)/x (x>0)的值域为 [6,+∞),求b 的值; (2)研究函数 y=x^2+c/x^2 (常数c >0)在定义域内的单调性,并说明理由; (3)对函数y =x+a/x 和y =x^2+a/x^2(常数a >0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x) =(x^2+1/x)^n+(1/x^2+x)^n(x 是正整数)在区间[½ ,2]上的最大值和最小值(可利用你的研究结论) 当x>0时,f(x)=ax+b/x有最小值;当x<0时,f(x)=ax+b/x有最大值 f(x)=x+1/x 首先你要知道他的定义域是x不等于0 当x>0, 由均值不等式有: f(x)=x+1/x>=2根号(x*1/x)=2 当x=1/x取等 x=1,有最小值是:2,没有最大值。 当x<0,-x>0 f(x)=-(-x-1/x) <=-2 当-x=-1/x取等。 x=-1,有最大值,没有最小值。 值域是:(负无穷,-2)并(2,正无穷) -------------- 证明函数f(x)=ax+b/x,(a>0,b>0)在x>0上的单调性 设x1>x2且x1,x2∈(0,+∝) 则f(x1)-f(x2)=(ax1+b/x1) -(ax2+b/x2) =a(x1-x2)-b(x1-x2)/x1x2 =(x1-x2)(ax1x2-b)/x1x2 因为x1>x2,则x1-x2>0 当x∈(0,√(b/a))时,x1x2<b/a 则ax1x2-b<b-b=0 所以f(x1)-f(x2)<0,即x∈(0,√(b/a))时,f(x)=ax+b/x单调递减; 当x∈(√(b/a),+∞)时,x1x2>b/a 则ax1x2-b>b-b=0 所以f(x1)-f(x2)>0,即x∈(√(b/a),+∞)时,f(x)=ax+b/x单调递增。
编辑本段重点(窍门)
其实对勾函数的一般形式是: f(x)=x+a/x(a>0) 定义域为(-∞,0)∪(0,+∞) 值域为(-∞,-2根号a)∪(2根号a,+∞) 当x>0,有x=根号a,有最小值是2根号a 当x<0,有x=-根号a,有最大值是:-2根号a 对钩函数的解析式为y=x+a/x(其中a>0),它的单调性讨论如下: 设x1<x2,则f(x1)-f(x2)=x1+a/x1-(x2+a/x2)=(x1-x2)+a(x2-x1)/(x1x2)=(x1-x2)(x1x2-a)/(x1x2) 下面分情况讨论 (1)当x1<x2<-根号a时,x1-x2<0,x1x2-a>0,x1x2>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数在(-∞,-根号a)上是增函数 (2)当-根号a<x1<x2<0时,x1-x2<0,x1x2-a<0,x1x2>0,所以f(x1)-f(x2)>0,即f(x1)>f(x2),所以函数在(-根号a,0)上是减函数 (3)当0<x1<x2<根号a时,x1-x2<0,x1x2-a<0,x1x2>0,所以f(x1)-f(x2)>0,即f(x1)>f(x2),所以函数在(0,根号a)上是减函数 (4)当根号a<x1<x2时,x1-x2<0,x1x2-a>0,x1x2>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数在(根号a,+∞)上是增函数 解题时常利用此函数的单调性求最大值与最小值。
参考资料:http://ke.baidu.com/view/701834.htm
热心网友 时间:2023-10-05 18:18
http://ke.baidu.com/view/701834.htm热心网友 时间:2023-10-05 18:19
有极值,关于一三象限对称