发布网友 发布时间:2022-04-22 09:52
共3个回答
热心网友 时间:2023-07-13 05:39
平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点。
焦点是指构建曲线的特殊点。
例如,一个或两个焦点可用于定义圆锥截面,其四种类型是圆形,椭圆形,抛物线和双曲线。此外,使用两个焦点来定义卡西尼椭圆和笛卡尔椭圆,并且使用两个以上焦点来定义n-椭圆。
扩展资料:
y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k.有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)²+2,把(3,10)代入上式,解得y=2(x-1)²+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:
当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动h个单位得到;
当h<0时,y=a(x-h)²的图像可由抛物线y=ax²向左平行移动|h|个单位得到;
当h>0,k>0时,将抛物线y=ax向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)+k的图象;
当h>0,k<0时,将抛物线y=ax向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象;
当h<0,k>0时,将抛物线y=ax向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)+k的图象;
当h<0,k<0时,将抛物线y=ax向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象。
参考资料来源:百度百科-抛物线
参考资料来源:百度百科-焦点
热心网友 时间:2023-07-13 05:40
面内与一个定点F和一条定直线l 的距离相等的点的轨迹叫做抛物线. 定点F叫做抛物线的焦点. 定直线l 叫做抛物线的准线. 新授内容 一,抛物线的范围: y2=2px y取全体实数 X Y X 0 二,抛物线的对称性 y2=2px 关于X轴对称 没有对称中心,因此,抛物线又叫做无心圆锥曲线. 而椭圆和双曲线又叫做有心圆锥曲线 X Y 新授内容 定义 :抛物线与对称轴的交点,叫做抛物线的顶点 只有一个热心网友 时间:2023-07-13 05:40
好困啊!!!