发布网友 发布时间:2022-08-15 09:56
共4个回答
热心网友 时间:2023-09-15 01:20
牛顿-莱布尼茨公式简化了定积分的计算,利用该公式可以计算曲线的弧长,平面曲线围成的面积以及空间曲面围成的立体体积,这在实际问题中有广泛的应用,例如计算坝体的填筑方量。
牛顿-莱布尼茨公式在物理学上也有广泛的应用,计算运动物体的路程,计算变力沿直线所做的功以及物体之间的万有引力。
牛顿-莱布尼茨公式促进了其他数学分支的发展,该公式在微分方程,傅里叶变换,概率论,复变函数等数学分支中都有体现。
热心网友 时间:2023-09-15 01:20
牛顿-莱布尼兹公式(Newton-Leibniz formula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。热心网友 时间:2023-09-15 01:21
证明:设:F(x)在区间(a,b)上可导,将区间n等分,分点依次是x1,x2,…xi…x(n-1),记a=x0,b=xn,每个小区间的长度为Δx=(b-a)/n, 则F(x)在区间[x(i-1),xi]上的变化为F(xi)-F(x(i-1))(i=1,2,3…) 当Δx很小时, F(x1)-F(x0)=F’(x1)*Δx F(x2)-F(x1)=F’(热心网友 时间:2023-09-15 01:21
证明:设:F(x)在区间(a,b)上可导,将区间n等分,分点依次是x1,x2,…xi…x(n-1),记a=x0,b=xn,每个小区间的长度为Δx=(b-a)/n, 则F(x)在区间[x(i-1),xi]上的变化为F(xi)-F(x(i-1))(i=1,2,3…) 当Δx很小时, F(x1)-F(x0)=F’(x1)*Δx F(x2)-F(x1)=F’(x2..