发布网友 发布时间:2022-09-04 07:39
共1个回答
热心网友 时间:2024-08-21 20:01
一、质点的运动
(1)——直线运动
1)匀变速直线运动
1、平均速度V平=S/t(定义式)2、有用推论Vt^2–Vo^2=2as
3、中间时刻速度Vt/2=V平=(Vt+Vo)/24、末速度Vt=Vo+at
5、中间位置速度Vs/2=(Vo^2+Vt^2)/21/26、位移S=V平t=Vot+at^2/2=Vt/2t
7、加速度a=(Vt-Vo)/t以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0
8、实验用推论ΔS=aT^2ΔS为相邻连续相等时间(T)内位移之差
9、主要物理量及单位:初速(Vo):m/s
加速度(a):m/s^2末速度(Vt):m/s
时间(t):秒(s)位移(S):米(m)路程:米速度单位换算:1m/s=3、6Km/h
注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s——t图/v——t图/速度与速率/
2)自由落体
1、初速度Vo=0
2、末速度Vt=gt
3、下落高度h=gt^2/2(从Vo位置向下计算)4、推论Vt^2=2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。
(2)a=g=9、8m/s^2≈10m/s^2重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。
3)竖直上抛
1、位移S=Vot-gt^2/22、末速度Vt=Vo-gt(g=9、8≈10m/s2)
3、有用推论Vt^2–Vo^2=-2gS4、上升最大高度Hm=Vo^2/2g(抛出点算起)
5、往返时间t=2Vo/g(从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)——曲线运动万有引力
1)平抛运动
1、水平方向速度Vx=Vo2、竖直方向速度Vy=gt
3、水平方向位移Sx=Vot4、竖直方向位移(Sy)=gt^2/2
5、运动时间t=(2Sy/g)1/2(通常又表示为(2h/g)1/2)
6、合速度Vt=(Vx^2+Vy^2)1/2=Vo^2+(gt)^21/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/Vo
7、合位移S=(Sx^2+Sy^2)1/2,
位移方向与水平夹角α:tgα=Sy/Sx=gt/2Vo
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。
(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。
(3)θ与β的关系为tgβ=2tgα。
(4)在平抛运动中时间t是解题关键。
(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动
1、线速度V=s/t=2πR/T2、角速度ω=Φ/t=2π/T=2πf
3、向心加速度a=V^2/R=ω^2R=(2π/T)^2R4、向心力F心=Mv^2/R=mω^2-R=m(2π/T)^2-R
5、周期与频率T=1/f6、角速度与线速度的关系V=ωR
7、角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8、主要物理量及单位:弧长(S):米(m)角度(Φ):弧度(rad)频率(f):赫(Hz)
周期(T):秒(s)转速(n):r/s半径(R):米(m)线速度(V):m/s
角速度(ω):rad/s向心加速度:m/s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力
1、开普勒第三定律T2/R3=K(=4π^2/GM)R:轨道半径T:周期K:常量(与行星质量无关)
2、万有引力定律F=Gm1m2/r^2G=6、67×10^-11N·m^2/kg^2方向在它们的连线上
3、天体上的重力和重力加速度GMm/R^2=mgg=GM/R^2R:天体半径(m)
4、卫星绕行速度、角速度、周期V=(GM/R)1/2ω=(GM/R^3)1/2T=2π(R^3/GM)1/2
5、第一(二、三)宇宙速度V1=(g地r地)1/2=7、9Km/sV2=11、2Km/sV3=16、7Km/s
6、地球同步卫星GMm/(R+h)^2=m-4π^2(R+h)/T^2h≈3、6kmh:距地球表面的高度
注:(1)天体运动所需的向心力由万有引力提供,F心=F万。
(2)应用万有引力定律可估算天体的质量密度等。
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。
(5)地球卫星的最大环绕速度和最小发射速度均为7、9Km/S。
四、机械能
1、功
(1)做功的两个条件:作用在物体上的力。
物体在里的方向上通过的距离。
(2)功的大小:W=Fscosa功是标量功的单位:焦耳(J)
1J=1N-m
当00F做正功F是动力
当a=派/2w=0(cos派/2=0)F不作功
当派/2<=a派W<0F做负功F是阻力
(3)总功的求法:
W总=W1+W2+W3……Wn
W总=F合Scosa
2、功率
(1)定义:功跟完成这些功所用时间的比值。
P=W/t功率是标量功率单位:瓦特(w)
此公式求的是平均功率
1w=1J/s1000w=1kw
(2)功率的另一个表达式:P=Fvcosa
当F与v方向相同时,P=Fv。(此时cos0度=1)
此公式即可求平均功率,也可求瞬时功率
1)平均功率:当v为平均速度时
2)瞬时功率:当v为t时刻的瞬时速度
(3)额定功率:指机器正常工作时最大输出功率
实际功率:指机器在实际工作中的输出功率
正常工作时:实际功率≤额定功率
(4)机车运动问题(前提:阻力f恒定)
P=FvF=ma+f(由牛顿第二定律得)
汽车启动有两种模式
1)汽车以恒定功率启动(a在减小,一直到0)
P恒定v在增加F在减小尤F=ma+f
当F减小=f时v此时有最大值
2)汽车以恒定加速度前进(a开始恒定,在逐渐减小到0)
a恒定F不变(F=ma+f)V在增加P实逐渐增加最大
此时的P为额定功率即P一定
P恒定v在增加F在减小尤F=ma+f
当F减小=f时v此时有最大值
3、功和能
(1)功和能的关系:做功的过程就是能量转化的过程
功是能量转化的量度
(2)功和能的区别:能是物体运动状态决定的物理量,即过程量
功是物体状态变化过程有关的物理量,即状态量
这是功和能的根本区别。
4、动能。动能定理
(1)动能定义:物体由于运动而具有的能量。用Ek表示
表达式Ek=1/2mv^2能是标量也是过程量
单位:焦耳(J)1kg-m^2/s^2=1J
(2)动能定理内容:合外力做的功等于物体动能的变化
表达式W合=ΔEk=1/2mv^2-1/2mv0^2
适用范围:恒力做功,变力做功,分段做功,全程做功
5、重力势能
(1)定义:物体由于被举高而具有的能量。用Ep表示
表达式Ep=mgh是标量单位:焦耳(J)
(2)重力做功和重力势能的关系
W重=-ΔEp
重力势能的变化由重力做功来量度
(3)重力做功的特点:只和初末位置有关,跟物体运动路径无关
重力势能是相对性的,和参考平面有关,一般以地面为参考平面
重力势能的变化是绝对的,和参考平面无关
(4)弹性势能:物体由于形变而具有的能量
弹性势能存在于发生弹性形变的物体中,跟形变的大小有关
弹性势能的变化由弹力做功来量度
6、机械能守恒定律
(1)机械能:动能,重力势能,弹性势能的总称
总机械能:E=Ek+Ep是标量也具有相对性
机械能的变化,等于非重力做功(比如阻力做的功)
ΔE=W非重
机械能之间可以相互转化
(2)机械能守恒定律:只有重力做功的情况下,物体的动能和重力势能
发生相互转化,但机械能保持不变
表达式:Ek1+Ep1=Ek2+Ep2成立条件:只有重力做功
1、定义:把某个特定的物体在某个特定的物理环境中所受到的力一个不漏,一个不重地找出来,并画出定性的受力示意图。对物体进行正确地受力分析,是解决好力学问题的关键。
2、相对合理的顺序:先找场力(电场力、磁场力、重力),再找接触力(弹力、摩擦力),最后分析其它力。
3、为了在受力分析时不多分析力,也不漏力,一般情况下按下面的步骤进行:
(1)确定研究对象—可以是某个物体也可以是整体。
(2)按顺序画力
①.先画重力:作用点画在物体的重心,方向竖直向下。
②.次画已知力
③.再画接触力—(弹力和摩擦力):看研究对象跟周围其他物体有几个接触点(面),先对某个接触点(面)分析,若有挤压,则画出弹力,若还有相对运动或相对运动的趋势,则再画出摩擦力。分析完一个接触点(面)后,再依次分析其他的接触点(面)。
④.再画其他场力:看是否有电、磁场力作用,如有则画出。
第一章 力
知识要点:
1、本专题知识点及基本技能要求
(1)力的本质
(2)重力、物体的重心
(3)弹力、胡克定律
(4)摩擦力
(5)物体受力情况分析
1、力的本质:(参看例1、2、3)
(1)力是物体对物体的作用。
※脱离物体的力是不存在的,对应一个力,有受力物体同时有施力物体。找不到施力物体的力是无中生有。(例如:脱离*筒的子弹所谓向前的冲力,沿光滑平面匀速向前运动的小球受到的向前运动的`力等)
(2)力作用的相互性决定了力总是成对出现:
※甲乙两物体相互作用,甲受到乙施予的作用力的同时,甲给乙一个反作用力。作用力和反作用力,大小相等、方向相反,分别作用在两个物体上,它们总是同种性质的力。(例如:图中N与N 均属弹力,均属静摩擦力)
(3)力使物体发生形变,力改变物体的运动状态(速度大小或速度方向改变)使物体获得加速度。
※这里的力指的是合外力。合外力是产生加速度的原因,而不是产生运动的原因。对于力的作用效果的理解,结合上定律就更明确了。
(4)力是矢量。
※矢量:既有大小又有方向的量,标量只有大小。
力的作用效果决定于它的大小、方向和作用点(三要素)。大小和方向有一个不确定作用效果就无法确定,这就是既有大小又有方向的物理含意。
(5)常见的力:根据性质命名的力有重力、弹力、摩擦力;根据作用效果命名的力有拉力、下滑力、支持力、阻力、动力等。
2、重力,物体的重心(参看练习题)
(1)重力是由于地球的吸引而产生的力;
(2)重力的大小:G=mg,同一物体质量一定,随着所处地理位置的变化,重力加速度的变化略有变化。从赤道到两极G?大(变化千分之一),在极地G最大,等于地球与物体间的万有引力;随着高度的变化G?小(变化万分之一)。
热心网友 时间:2024-08-21 20:01
一、质点的运动
(1)——直线运动
1)匀变速直线运动
1、平均速度V平=S/t(定义式)2、有用推论Vt^2–Vo^2=2as
3、中间时刻速度Vt/2=V平=(Vt+Vo)/24、末速度Vt=Vo+at
5、中间位置速度Vs/2=(Vo^2+Vt^2)/21/26、位移S=V平t=Vot+at^2/2=Vt/2t
7、加速度a=(Vt-Vo)/t以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0
8、实验用推论ΔS=aT^2ΔS为相邻连续相等时间(T)内位移之差
9、主要物理量及单位:初速(Vo):m/s
加速度(a):m/s^2末速度(Vt):m/s
时间(t):秒(s)位移(S):米(m)路程:米速度单位换算:1m/s=3、6Km/h
注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s——t图/v——t图/速度与速率/
2)自由落体
1、初速度Vo=0
2、末速度Vt=gt
3、下落高度h=gt^2/2(从Vo位置向下计算)4、推论Vt^2=2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。
(2)a=g=9、8m/s^2≈10m/s^2重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。
3)竖直上抛
1、位移S=Vot-gt^2/22、末速度Vt=Vo-gt(g=9、8≈10m/s2)
3、有用推论Vt^2–Vo^2=-2gS4、上升最大高度Hm=Vo^2/2g(抛出点算起)
5、往返时间t=2Vo/g(从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)——曲线运动万有引力
1)平抛运动
1、水平方向速度Vx=Vo2、竖直方向速度Vy=gt
3、水平方向位移Sx=Vot4、竖直方向位移(Sy)=gt^2/2
5、运动时间t=(2Sy/g)1/2(通常又表示为(2h/g)1/2)
6、合速度Vt=(Vx^2+Vy^2)1/2=Vo^2+(gt)^21/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/Vo
7、合位移S=(Sx^2+Sy^2)1/2,
位移方向与水平夹角α:tgα=Sy/Sx=gt/2Vo
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。
(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。
(3)θ与β的关系为tgβ=2tgα。
(4)在平抛运动中时间t是解题关键。
(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动
1、线速度V=s/t=2πR/T2、角速度ω=Φ/t=2π/T=2πf
3、向心加速度a=V^2/R=ω^2R=(2π/T)^2R4、向心力F心=Mv^2/R=mω^2-R=m(2π/T)^2-R
5、周期与频率T=1/f6、角速度与线速度的关系V=ωR
7、角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8、主要物理量及单位:弧长(S):米(m)角度(Φ):弧度(rad)频率(f):赫(Hz)
周期(T):秒(s)转速(n):r/s半径(R):米(m)线速度(V):m/s
角速度(ω):rad/s向心加速度:m/s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力
1、开普勒第三定律T2/R3=K(=4π^2/GM)R:轨道半径T:周期K:常量(与行星质量无关)
2、万有引力定律F=Gm1m2/r^2G=6、67×10^-11N·m^2/kg^2方向在它们的连线上
3、天体上的重力和重力加速度GMm/R^2=mgg=GM/R^2R:天体半径(m)
4、卫星绕行速度、角速度、周期V=(GM/R)1/2ω=(GM/R^3)1/2T=2π(R^3/GM)1/2
5、第一(二、三)宇宙速度V1=(g地r地)1/2=7、9Km/sV2=11、2Km/sV3=16、7Km/s
6、地球同步卫星GMm/(R+h)^2=m-4π^2(R+h)/T^2h≈3、6kmh:距地球表面的高度
注:(1)天体运动所需的向心力由万有引力提供,F心=F万。
(2)应用万有引力定律可估算天体的质量密度等。
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。
(5)地球卫星的最大环绕速度和最小发射速度均为7、9Km/S。
四、机械能
1、功
(1)做功的两个条件:作用在物体上的力。
物体在里的方向上通过的距离。
(2)功的大小:W=Fscosa功是标量功的单位:焦耳(J)
1J=1N-m
当00F做正功F是动力
当a=派/2w=0(cos派/2=0)F不作功
当派/2<=a派W<0F做负功F是阻力
(3)总功的求法:
W总=W1+W2+W3……Wn
W总=F合Scosa
2、功率
(1)定义:功跟完成这些功所用时间的比值。
P=W/t功率是标量功率单位:瓦特(w)
此公式求的是平均功率
1w=1J/s1000w=1kw
(2)功率的另一个表达式:P=Fvcosa
当F与v方向相同时,P=Fv。(此时cos0度=1)
此公式即可求平均功率,也可求瞬时功率
1)平均功率:当v为平均速度时
2)瞬时功率:当v为t时刻的瞬时速度
(3)额定功率:指机器正常工作时最大输出功率
实际功率:指机器在实际工作中的输出功率
正常工作时:实际功率≤额定功率
(4)机车运动问题(前提:阻力f恒定)
P=FvF=ma+f(由牛顿第二定律得)
汽车启动有两种模式
1)汽车以恒定功率启动(a在减小,一直到0)
P恒定v在增加F在减小尤F=ma+f
当F减小=f时v此时有最大值
2)汽车以恒定加速度前进(a开始恒定,在逐渐减小到0)
a恒定F不变(F=ma+f)V在增加P实逐渐增加最大
此时的P为额定功率即P一定
P恒定v在增加F在减小尤F=ma+f
当F减小=f时v此时有最大值
3、功和能
(1)功和能的关系:做功的过程就是能量转化的过程
功是能量转化的量度
(2)功和能的区别:能是物体运动状态决定的物理量,即过程量
功是物体状态变化过程有关的物理量,即状态量
这是功和能的根本区别。
4、动能。动能定理
(1)动能定义:物体由于运动而具有的能量。用Ek表示
表达式Ek=1/2mv^2能是标量也是过程量
单位:焦耳(J)1kg-m^2/s^2=1J
(2)动能定理内容:合外力做的功等于物体动能的变化
表达式W合=ΔEk=1/2mv^2-1/2mv0^2
适用范围:恒力做功,变力做功,分段做功,全程做功
5、重力势能
(1)定义:物体由于被举高而具有的能量。用Ep表示
表达式Ep=mgh是标量单位:焦耳(J)
(2)重力做功和重力势能的关系
W重=-ΔEp
重力势能的变化由重力做功来量度
(3)重力做功的特点:只和初末位置有关,跟物体运动路径无关
重力势能是相对性的,和参考平面有关,一般以地面为参考平面
重力势能的变化是绝对的,和参考平面无关
(4)弹性势能:物体由于形变而具有的能量
弹性势能存在于发生弹性形变的物体中,跟形变的大小有关
弹性势能的变化由弹力做功来量度
6、机械能守恒定律
(1)机械能:动能,重力势能,弹性势能的总称
总机械能:E=Ek+Ep是标量也具有相对性
机械能的变化,等于非重力做功(比如阻力做的功)
ΔE=W非重
机械能之间可以相互转化
(2)机械能守恒定律:只有重力做功的情况下,物体的动能和重力势能
发生相互转化,但机械能保持不变
表达式:Ek1+Ep1=Ek2+Ep2成立条件:只有重力做功
1、定义:把某个特定的物体在某个特定的物理环境中所受到的力一个不漏,一个不重地找出来,并画出定性的受力示意图。对物体进行正确地受力分析,是解决好力学问题的关键。
2、相对合理的顺序:先找场力(电场力、磁场力、重力),再找接触力(弹力、摩擦力),最后分析其它力。
3、为了在受力分析时不多分析力,也不漏力,一般情况下按下面的步骤进行:
(1)确定研究对象—可以是某个物体也可以是整体。
(2)按顺序画力
①.先画重力:作用点画在物体的重心,方向竖直向下。
②.次画已知力
③.再画接触力—(弹力和摩擦力):看研究对象跟周围其他物体有几个接触点(面),先对某个接触点(面)分析,若有挤压,则画出弹力,若还有相对运动或相对运动的趋势,则再画出摩擦力。分析完一个接触点(面)后,再依次分析其他的接触点(面)。
④.再画其他场力:看是否有电、磁场力作用,如有则画出。
第一章 力
知识要点:
1、本专题知识点及基本技能要求
(1)力的本质
(2)重力、物体的重心
(3)弹力、胡克定律
(4)摩擦力
(5)物体受力情况分析
1、力的本质:(参看例1、2、3)
(1)力是物体对物体的作用。
※脱离物体的力是不存在的,对应一个力,有受力物体同时有施力物体。找不到施力物体的力是无中生有。(例如:脱离*筒的子弹所谓向前的冲力,沿光滑平面匀速向前运动的小球受到的向前运动的`力等)
(2)力作用的相互性决定了力总是成对出现:
※甲乙两物体相互作用,甲受到乙施予的作用力的同时,甲给乙一个反作用力。作用力和反作用力,大小相等、方向相反,分别作用在两个物体上,它们总是同种性质的力。(例如:图中N与N 均属弹力,均属静摩擦力)
(3)力使物体发生形变,力改变物体的运动状态(速度大小或速度方向改变)使物体获得加速度。
※这里的力指的是合外力。合外力是产生加速度的原因,而不是产生运动的原因。对于力的作用效果的理解,结合上定律就更明确了。
(4)力是矢量。
※矢量:既有大小又有方向的量,标量只有大小。
力的作用效果决定于它的大小、方向和作用点(三要素)。大小和方向有一个不确定作用效果就无法确定,这就是既有大小又有方向的物理含意。
(5)常见的力:根据性质命名的力有重力、弹力、摩擦力;根据作用效果命名的力有拉力、下滑力、支持力、阻力、动力等。
2、重力,物体的重心(参看练习题)
(1)重力是由于地球的吸引而产生的力;
(2)重力的大小:G=mg,同一物体质量一定,随着所处地理位置的变化,重力加速度的变化略有变化。从赤道到两极G?大(变化千分之一),在极地G最大,等于地球与物体间的万有引力;随着高度的变化G?小(变化万分之一)。