高中数学立体几何知识点大全
发布网友
发布时间:2022-09-02 06:22
我来回答
共0个回答
懂视网
时间:2022-09-05 20:02
1、柱、锥、台、球的结构特征,棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体,分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等,表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱,几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
2、棱锥,定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体,分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等,表示:用各顶点字母,如五棱锥,几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
3、棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分,分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等,表示:用各顶点字母,如五棱台,几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点。
4、圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
5、圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
6、圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分。
7、球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体。
8、空间几何体的三视图,定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下),注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
高中数学立体几何部分知识点
数学知识点1、柱、锥、台、球的结构特征 (1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。(2)棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的...
高中数学立体几何易错知识点总结
高中数学立体几何易错知识点总结如下:1.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。2.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?3.三垂线定理及其逆定理你记...
高中数学必修二第一章立体几何初步知识点
高中数学必修二第一章立体几何初步 棱柱表面积A=L*H+2*S,体积V=S*H (L--底面周长,H--柱高,S--底面面积)圆柱表面积A=L*H+2*S=2π*R*H+2π*R^2,体积V=S*H=π*R^2*H (L--底面周长,H--柱高,S--底面面积,R--底面圆半径)球体表面积A=4π*R^2,体积V...
高中数学立体几何公式
高中数学立体几何公式如下:空间几何体的表面积:空间几何体的体积:一、线线平行的判断:① 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。② 如果两个平行平面同时和第三个平面相交,那么它们的交线平行。③ 垂直于同一平面的两条直线平行。二、 线线垂直的...
高中数学立体几何知识点
立体几何这类题需要比较强的空间思维 想象力 ,所以对部分同学来说也是挺头疼的类型题。那么下面我给大家分享一些高中数学立体几何知识点,希望能够帮助大家! 高中数学立体几何知识1 柱、锥、台、球的结构特征 (1)棱柱: 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些...
高中立体几何知识点总结
高中立体几何知识点总结 平面 通常用一个平行四边形来表示。平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,...
高中数学空间几何题知识点
① 方法: 选点 (常选:端点、中点)平移(空间直线平面化)【还要注意总结平时习题中推出的定理,在做选择填空时可以节省时间】二线面问题 1 位置关系(定义)线在面内:有无数个公共点 线在面外:①相交:有且只有一个公共点 ②平行:没有公共点 2 线面平行 ①定义、②判定定理、 若 a不包含...
高中数学 立体几何
尽管说得过分些,但从另外一个角度说明,“三垂线定理”在整个高中“立体几何”中的地位和作用。确实,“三垂线定理”是整个立体几何内容的一个典型代表,处在整个立体几何知识的枢纽位置,综合了很多知识内容:直线与直线、直线与平面、平面与平面的垂直和平行。在数学2“点、直线、平面之间的位置关系”...
怎样学好高中数学立体几何?
1、要建立空间概念,强化空间思维能力!2、牢固的平面几何基础:因为立体几何问题的解决,都是在平面上处理的,多用平面几何的知识。3、要能把立体问题,化为平面问题,这里有经验和技巧,通过多作题,自己就会体会到的!4、牢牢地掌握立体几何的概念、定理、法则、公式,并能再作题过程中强化它!以上...
高中数学,立体几何,10题,为什么球心就是BC中点?这是怎么得出来的?_百 ...
用到的性质是直角三角形(A'BC)斜边上的中线(A'O)=斜边(BC)长度的一半 而已知BCD也是直角三角形,就得到了OA'=OB=OC=OD,O是球心