发布网友 发布时间:2022-04-22 23:12
共4个回答
热心网友 时间:2023-10-08 17:13
以所选取的自变量拟出的公式与实际的统计值出入比较大,建议去除相关性较小的几个自变量就有可能小于0.05。
大于0.05意味着结果没有达到统计学上的显著,即结果不具有统计学意义,不能判定均值差异是否为随机误差所致。此时,首先看看效应量,即eta平方,spss分析方差分析都会提供,如果eta平方至少是中等大小以上,比如0.06以上,那么不显著的原因比较有可能是因为统计检验力不够所致。
可以增大样本量再次进行方差分析。如果eta平方比较小,比如0.01左右,结合不显著的结果,可以认为没有均值差异。
在线性回归中
数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。
像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布(多元分析领域)。
以上内容参考:百度百科-线性回归
热心网友 时间:2023-10-08 17:13
刚看了一篇外文文献,其中提到了几个变量之间的相关性分析。作者用SPSS得出A与B的相关性系数约为0.09,但显著性水平大于0.05即不显著。随后继续作回归性分析(未阐明是否是多元线性)结论是BETA 值0.35,显著性水平小于0.05。因此有个疑问,既然相关性分析得出的结论是两已经不显著相关了,为何还要继续回归分析,回归分析不是得出具体的何种相关关系系数的吗?求正解。一种解释是: 1、相关与回归在只有两个变量的情况下其实说的差不多是一回事。2、多变量情况下,可以用回归做预测,考虑调节变量,共线性问题,和多元回归一些其他功能,所以,继续做回归,还是两个变量,真的没必要,如果多变量情况下,还是可以考虑的。热心网友 时间:2023-10-08 17:14
回归分析的常数项 无论是否显著 都没有关系,你要做的研究都是你的研究变量 对因变量的影响,所以你只要看你的研究变量就好了。至于常数项可以不去管热心网友 时间:2023-10-08 17:14
如果你们有要求的话要么换数据,要么就自己改改数据,没要求的话就这样也无所谓