发布网友 发布时间:2022-04-23 17:09
共3个回答
热心网友 时间:2022-07-06 12:42
1907年,爱因斯坦撰写了关于狭义相对论的长篇文章《关于相对性原理和由此得出的结论》,在这篇文章中爱因斯坦第一次提到了等效原理,此后,爱因斯坦关于等效原理的思想又不断发展。他以惯性质量和引力质量成正比的自然规律作为等效原理的根据,提出在无限小的体积中均匀的引力场完全可以代替加速运动的参照系。爱因斯坦并且提出了封闭箱的说法:在一封闭箱中的观察者,不管用什么方法也无法确定他究竟是静止于一个引力场中,还是处在没有引力场却在作加速运动的空间中,这是解释等效原理最常用的说法,而惯性质量与引力质量相等是等效原理一个自然的推论。
由于等效原理能够使我们在加速运动现象中找到狭义相对论的“惯性系”,因此,这个原理的存在,使狭义相对论的定律能够被推广到非惯性运动中,使狭义相对论与广义相对论联系起来。
通过等效原理,我们可以推导出:越大的加速度,就会使有质量的物体受到越大的重力(引力),那么达不到光速就是因为我们在那之前会受到无穷大阻力,也同样可以推导出,接近光速的超快速度会使时间变慢,在大引力场中就同样会使时间变慢,以至于在黑洞中时间停止。
等效原理和协变性原理直接导致了广义相对论的出现,广义相对论已在很多实验和观测上取得成功。
当然,广义相对论并非最终的真理(就像牛顿力学一样),但是广义相对论仍被科学界认为是至今少有的完美的成功的理论。
热心网友 时间:2022-07-06 14:00
由于惯性系无法定义,爱因斯坦将相对性原理推广到非惯性系,提出了广义相对论的第一个原理:广义相对性原理.其内容是,所有参考系在描述自然定律时都是等效的.这与狭义相对性原理有很大区别.在不同参考系中,一切物理定律完全等价,没有任何描述上的区别.但在一切参考系中,这是不可能的,只能说不同参考系可以同样有效的描述自然律.这就需要我们寻找一种更好的描述方法来适应这种要求.通过狭义相对论,很容易证明旋转圆盘的圆周率大于3.14.因此,普通参考系应该用黎曼几何来描述.第二个原理是光速不变原理:光速在任意参考系内都是不变的.它等效于在四维时空中光的时空点是不动的.当时空是平直的,在三维空间中光以光速直线运动,当时空弯曲时,在三维空间中光沿着弯曲的空间运动.可以说引力可使光线偏折,但不可加速光子.第三个原理是最著名的等效原理.质量有两种,惯性质量是用来度量物体惯性大小的,起初由牛顿第二定律定义.引力质量度量物体引力荷的大小,起初由牛顿的万有引力定律定义.它们是互不相干的两个定律.惯性质量不等于电荷,甚至目前为止没有任何关系.那么惯性质量与引力质量(引力荷)在牛顿力学中不应该有任何关系.然而通过当代最精密的试验也无法发现它们之间的区别,惯性质量与引力质量严格成比例(选择适当系数可使它们严格相等).广义相对论将惯性质量与引力质量完全相等作为等效原理的内容.惯性质量联系着惯性力,引力质量与引力相联系.这样,非惯性系与引力之间也建立了联系.那么在引力场中的任意一点都可以引入一个很小的自由降落参考系.由于惯性质量与引力质量相等,在此参考系内既不受惯性力也不受引力,可以使用狭义相对论的一切理论.初始条件相同时,等质量不等电荷的质点在同一电场中有不同的轨道,但是所有质点在同一引力场中只有唯一的轨道.等效原理使爱因斯坦认识到,引力场很可能不是时空中的外来场,而是一种几何场,是时空本身的一种性质.由于物质的存在,原本平直的时空变成了弯曲的黎曼时空.在广义相对论建立之初,曾有第四条原理,惯性定律:不受力(除去引力,因为引力不是真正的力)的物体做惯性运动.在黎曼时空中,就是沿着测地线运动.测地线是直线的推广,是两点间最短(或最长)的线,是唯一的.比如,球面的测地线是过球心的平面与球面截得的大圆的弧.但广义相对论的场方程建立后,这一定律可由场方程导出,于是惯性定律变成了惯性定理.值得一提的是,伽利略曾认为匀速圆周运动才是惯性运动,匀速直线运动总会闭合为一个圆.这样提出是为了解释行星运动.他自然被牛顿力学批的体无完肤,然而相对论又将它复活了,行星做的的确是惯性运动,只是不是标准的匀速圆周而已.热心网友 时间:2022-07-06 15:35
狭义是1,光速不变理论;2,相对性原理