发布网友 发布时间:2023-04-01 15:27
共2个回答
热心网友 时间:2023-11-21 13:06
多项式什么叫单项式定义如下:
单项式的定义:数与字母的乘积,这样的代数式就是单项式。其中,单独一个数字或单独一个字母也是单项式。
1、单项式里的对象是数字与字母:
从定义中不难看出,在单项式中要么只有数字,比如36、1.2、1/6(六分之一)、兀(圆周率)、36兀……等这些都是单项式;要么只有字母,比如a、b、c 、abc……等这些都是单项式;要么既有数字又有字母,比如36a、1.2abc……等这些都是单项式。也就是说,单项式的参与对象是数字、或字母、或数字与字母。
数字,包括整数、分数和小数。值得强调一点是,既然包括小数。当然也就包括无理数了。因为小数包括无限不循环小数,无限不循环小数就是无理数。比如我们说的圆周率“兀”就是无理数,因为单项式的参与对象也包括无理数,所以像"3兀b"之类也是单项式。
2、单项式里只有一种运算符号,那就是乘号:
我们都学过代数式的概念,再结合单项式的概念,不难看出,单项式也是代数式里的一种。我们也知道,代数式的概念里强调的是运算符号,也就是说只要是运算符号,其它条件也满足的话,那就是代数式。
多项式的定义:几个单项式的和就叫做多项式。从多项式的概念中不难看出,多项式是由单项式组成的,多项式中的单项式之间的关系是“和”的关系。
概念是判断的唯一标准。那么,我们拿着单项式和多项式的概念,对图中的3a和3+a进行区分:3a表示的是一个数字与一个字母的乘积,符合单项式的概念,显然3a就是个单项式。而3+b中呢,单独的一个数字3是单项式,单独的一个字母b是单项式,加号“+”表示这两个单项式的关系是“和”关系,所以满足多项式的概念,所以3+b是个多项式。
热心网友 时间:2023-11-21 13:07
什么叫多项式
若干个单项式的和组成的式叫做多项式(减法中有:减一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。不含字母的项叫做常数项。如一式中:最高项的次数为5,此式有3个单项式组成,则称其为:五次三项式。
比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起的定理:0作为多项式时,次数为负无穷大。
什么叫单项式
单项式:1.任意个字母和数字的积的形式的代数式(除法中有:除以一个数等于乘这个数的倒数)。
2.一个字母或数字也叫单项式。
3.分母中不含字母(单项式是整式,而不是分式)
a,-5,1X,2XY,x/2,都是单项式,而0.5m+n,2/x不是单项式。
单项式的次数是指单项式中所有字母因数的指数和
1、由数或字母的积组成的代数式叫作单项式,单独的一个数或一个字母也叫作单项式。
例如:0可看作0乘a,1可以看作1乘指数为0的字母,b可以看作b乘1。
2、由若干个单项式的和组成的代数式叫作多项式。
例如:减法中有减一个数等于加上它的相反数。
辗转相除法
利用辗转相除法的算法,可将ƒ(x)与g(x)的最大公因式rs(x)表成ƒ(x)和g(x)的组合,而组合的系数是F上的多项式。
如果ƒ(x)与g(x)的最大公因式是零次多项式,那么称ƒ(x)与g(x)是互素的。最大公因式和互素概念都可以推广到几个多项式的情形。
如果F[x]中的一个次数不小于1的多项式ƒ(x),不能表成 F[x] 中的两个次数较低的多项式的乘积,那么称ƒ(x)是F上的一个不可约多项式。
热心网友 时间:2023-11-21 13:06
多项式什么叫单项式定义如下:
单项式的定义:数与字母的乘积,这样的代数式就是单项式。其中,单独一个数字或单独一个字母也是单项式。
1、单项式里的对象是数字与字母:
从定义中不难看出,在单项式中要么只有数字,比如36、1.2、1/6(六分之一)、兀(圆周率)、36兀……等这些都是单项式;要么只有字母,比如a、b、c 、abc……等这些都是单项式;要么既有数字又有字母,比如36a、1.2abc……等这些都是单项式。也就是说,单项式的参与对象是数字、或字母、或数字与字母。
数字,包括整数、分数和小数。值得强调一点是,既然包括小数。当然也就包括无理数了。因为小数包括无限不循环小数,无限不循环小数就是无理数。比如我们说的圆周率“兀”就是无理数,因为单项式的参与对象也包括无理数,所以像"3兀b"之类也是单项式。
2、单项式里只有一种运算符号,那就是乘号:
我们都学过代数式的概念,再结合单项式的概念,不难看出,单项式也是代数式里的一种。我们也知道,代数式的概念里强调的是运算符号,也就是说只要是运算符号,其它条件也满足的话,那就是代数式。
多项式的定义:几个单项式的和就叫做多项式。从多项式的概念中不难看出,多项式是由单项式组成的,多项式中的单项式之间的关系是“和”的关系。
概念是判断的唯一标准。那么,我们拿着单项式和多项式的概念,对图中的3a和3+a进行区分:3a表示的是一个数字与一个字母的乘积,符合单项式的概念,显然3a就是个单项式。而3+b中呢,单独的一个数字3是单项式,单独的一个字母b是单项式,加号“+”表示这两个单项式的关系是“和”关系,所以满足多项式的概念,所以3+b是个多项式。
热心网友 时间:2023-11-21 13:07
什么叫多项式
若干个单项式的和组成的式叫做多项式(减法中有:减一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。不含字母的项叫做常数项。如一式中:最高项的次数为5,此式有3个单项式组成,则称其为:五次三项式。
比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起的定理:0作为多项式时,次数为负无穷大。
什么叫单项式
单项式:1.任意个字母和数字的积的形式的代数式(除法中有:除以一个数等于乘这个数的倒数)。
2.一个字母或数字也叫单项式。
3.分母中不含字母(单项式是整式,而不是分式)
a,-5,1X,2XY,x/2,都是单项式,而0.5m+n,2/x不是单项式。
单项式的次数是指单项式中所有字母因数的指数和
1、由数或字母的积组成的代数式叫作单项式,单独的一个数或一个字母也叫作单项式。
例如:0可看作0乘a,1可以看作1乘指数为0的字母,b可以看作b乘1。
2、由若干个单项式的和组成的代数式叫作多项式。
例如:减法中有减一个数等于加上它的相反数。
辗转相除法
利用辗转相除法的算法,可将ƒ(x)与g(x)的最大公因式rs(x)表成ƒ(x)和g(x)的组合,而组合的系数是F上的多项式。
如果ƒ(x)与g(x)的最大公因式是零次多项式,那么称ƒ(x)与g(x)是互素的。最大公因式和互素概念都可以推广到几个多项式的情形。
如果F[x]中的一个次数不小于1的多项式ƒ(x),不能表成 F[x] 中的两个次数较低的多项式的乘积,那么称ƒ(x)是F上的一个不可约多项式。