发布网友 发布时间:2022-04-23 14:43
共3个回答
热心网友 时间:2022-06-07 15:58
相关系数介于区间[-1,1]。当相关系数为-1,表示完全负相关,表明两项资产的收益率变化方向和变化幅度容完全相反。当相关系数为+1时,表示完全正相关,表明两项资产的收益率变化方向和变化幅度完全相同。当相关系数为0时,表示不相关。
r值的绝对值介于0~1之间。通常来说,r越接近1,表示x与y两个量之间的相关程度就越强,反之,r越接近于0,x与y两个量之间的相关程度就越弱。
扩展资料:
相关关系:当一个或几个相互联系的变量取一定的数值时,与之相对应的另一变量的值虽然不确定,但它仍按某种规律在一定的范围内变化。变量间的这种相互关系,称为具有不确定性的相关关系。
⑴完全相关:两个变量之间的关系,一个变量的数量变化由另一个变量的数量变化所惟一确定,即函数关系。
⑵不完全相关:两个变量之间的关系介于不相关和完全相关之间。
⑶不相关:如果两个变量彼此的数量变化互相独立,没有关系。
参考资料来源:百度百科-相关关系
热心网友 时间:2022-06-07 15:58
相关系数r的计算公式是:
r值的绝对值介于0~1之间。通常来说,r越接近1,表示x与y两个量之间的相关程度就越强,反之,r越接近于0,x与y两个量之间的相关程度就越弱,一般认为:
扩展资料:
需要说明的是,皮尔逊相关系数并不是唯一的相关系数,但是最常见的相关系数,以下解释都是针对皮尔逊相关系数。
依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。
热心网友 时间:2022-06-07 15:59
相关系数r的计算公式如图:
其中Cov(X,Y)为X与Y的协方差,Var[X]为X的方差,Var[Y]为Y的方差。
扩展资料:
相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1。
当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。
参考资料来源:百度百科-相关系数