二元光学的原理,要详细
发布网友
发布时间:2022-04-23 17:00
我来回答
共2个回答
热心网友
时间:2023-08-05 18:56
二元光学是基于光波衍射理论发展起来的一个新兴光学分支,是光学与微电子技术相互渗透、交*而形成
的前沿学科。基于计算机辅助设计和微米级加工技术制成的平面浮雕型二元光学器件具有重量轻、易复制、造
价低等特点,并能实现传统光学难以完成的微小、阵列、集成及任意波面变换等新功能,从而使光学工程与技
术在诸如空间技术、激光加工、计算技术与信息处理、光纤通信及生物医学等现代国防科技与工业的众多领域
中显示出前所未有的重要作用及广阔的应用前景。二元光学于20世纪90年代初在国际上兴起研究热潮,并同时
引起学术界与工业界的极大兴趣及青睐。
随着近代光学和光电子技术的迅速发展,光电子仪器及其元件都发生了深刻而巨大的变化。光学零件已经不仅
仅是折射透镜、棱镜和反射镜。诸如微透镜阵列、全息透镜、衍射光学元件和梯度折射率透镜等新型光学元件
也越来越多地应用在各种光电子仪器中,使光电子仪器及其零部件更加小型化、阵列化和集成化。微光学元件
是制造小型光电子系统的关键元件,它具有体积小、质量轻、造价低等优点,并且能够实现普通光学元件难以
实现的微小、阵列、集成、成像和波面转换等新功能。
光学是一门古老的科学。自伽利略发明望远镜以来,光学已走过下几百年的漫长道路。60年代激光的出现,促
进了光学技术的迅速发展,但基于折反射原理的传统光学元(器)件,如透镜、棱镜等人都是以机械的铣、磨、抛
光等来制作的,不仅制造工艺复杂,而且元件尺寸大、重量大。在当前仪器走向光、机、电集成的趋势中,它
们已显得臃肿粗大极不匹配。研制小型、高效、阵列化光学元件已是光学界刻不容缓的任务。 80年代中期,美
国MIT林肯实验室威尔得坎普(Veldkamp)领导的研究组在设计新型传感系统中,率先提出了“二元光学”的概
念,他当时描述道:“现在光学有一个分支,它几乎完全不同于传统的制作方式,这就是衍射光学,其光学元
件的表面带有浮雕结构;由于使用了本来是制作集成电路的生产方法,所用的掩模是二元的,且掩模用二元编
码形式进行分层,故引出了二元光学的概念。”随后二元光学不仅作为一门技术,而且作为一门学科迅速地受
到学术界和工业界的青睐,在国际上掀起了一股二元光学的研究热潮。二元光学元(器)件因其在实现光波变换上
所具有的许多卓越的、传统光学难以具备的功能,而有利于促进光学系统实现微型化、阵列化和集成化,开辟
了光学领域的新视野。关于二元光学概念的准确定义,至今光学界还没有统一的看法,但普遍认为,二元光学
是指基于光波的衍射理论,利用计算机辅助设计,并用超大规模集成(VLSI)电路制作工艺,在片基上(或传统光
学器件表面)刻蚀产生两个或多个台阶深度的浮雕结构,形成纯相位、同轴再现、具有极高衍射效率的一类衍射
光学元件。它是光学与微电子学相互渗透与交*的前沿学科。二元光学不仅在变革常规光学元件,变革传统光学
技术上具有创新意义,而且能够实现传统光学许多难以达到的目的和功能,因而被誉为“90年代的光学”。它
的出现将给传统光学设计理论及加工工艺带来一次*。二元光学元件源于全息光学元件(HOE)特别是计算全
息元件(CGH)。可以认为相息图(Kinoform)就是早期的二元光学元件。但是全息元件效率低,且离轴再现;相
息图虽同轴再现。但工艺长期未能解决,因此进展缓慢、实用受限。二元光学技术则同时解决了衍射元件的效
率和加工问题。它以多阶相位结构近似相息图的连续浮雕结构。二元光学是微光学中的一个重要分支。微光学
是研究微米、纳米级尺寸的光学元器件的设计、制作工艺及利用这类元器件实现光波的发射、传输、变换及接
收的理论和技术的新学科。微光学发展的两个主要分支是:(1)基于折射原理的梯度折射率光学,(2)基于衍射原
理的二元光学。二者在器件性能、工艺制作等方面各具特色。二元光学是微光学领域中最具活力、最有发展潜
力的前沿学科分支。光学和电子学的发展都基于微细加工的两个关键技术:亚微米光刻和各向异性刻蚀技术。
微电子学推动了二元光学学科的发展,而微电子工业的进步则得益于光刻水平的提高。此外,二元光学技术的
标量衍射理论和傅里叶光学进行分析的,关于二元光学元件衍射效率与相位阶数之间的数学表达式也是标量衍
射理论的结果。在此范围内,可将二元光学元件的设计看作是一个逆衍射问题,即由给定的入射光场和所要求
的出射光场求衍射屏的透过率函数。基于这一思想的优化设计方法大致有五种:盖师贝格-撒克斯通
(Gerchberg-Saxton)算法(GS)或误差减法(ER)及其修正算法、直接二元搜索法(DBS也称爬山法(HC))、模拟退
火算法(SA)和遗传算法(GA)。其中模拟退火算法是一种适合解决大规模组合优化问题的方法,它具有描述简单
、使用灵活、应用广泛、运行效率高和较少受初始条件*等优点;遗传算法是一种借鉴生物界自然选择和自
然遗传机制的高度并行、随机、自适应搜索算法,它将适者生存原理同基因交换机制结合起来,形成一种具有
独特优化机制的搜索技术,而且特别适用于并行运算,已被应用到诸多领域。在国内,中国科学院物理研究所
杨国桢和顾本源提出任意线性变换系统中振幅-相位恢复的一般理论和杨-顾(Y-G)算法,并且成功地应用于解
决多种实际问题和变换系统中。在许多应用场合中,二元光学元件的特征尺寸为波长量级或亚波长量级,刻蚀
深度也较大(达到几个波长量级),标量衍射理论中的假设和近似便不再成立,此时,光波的偏振性质和不同偏振
光之间的相互作用对光的衍射结果起着重大作用,必须发展严格的矢量衍射理论及其设计方法。矢量衍射理论
基于电磁场理论,须在适当的边界条件上严格地求解麦克斯韦方程组,已经发展几种有关的设计理论,如积分
法、微分法、模态法和耦合波法。前两种方法虽然可以得到精确的结果,但是很难理解和实现,并需要复杂的
数值计算;比较起来,模态法和耦合波法的数学过程相对简单些,实现也较容易。这两种方法都是在相位调制
区将电磁场展开,所不同的是它们的展开形式,模态法将电磁场按模式展开,而耦合波法则将电磁场按衍射级
次展开。因而,耦合波方法涉及到的数学理论较为简单,给出的是可观察的衍射各级次的系数,而不是电磁场
模式系数。但总的来说,用这些理论方法设计二元光学元件都要进行复杂和费时的计算机运算,而且仅适合于
周期性的衍射元件结构。因此,当衍射结构的横向特征尺寸大于光波波长时,光波的偏振属性变得不那么重要
了,仍可采用传统的标量衍射理论得到一些合理的结果。对于更复杂的衍射结构,还有待发展实用而有效的设
计理论。 二、制作工艺方面的进展二元光学元件的基本制作工艺是超大规模集成电路中的微电子加工技术。但
是,微电子加工属薄膜图形加工,主要需控制的是二维的薄膜图形;而二元光学元件则是一种表面三维浮雕结
构,需要同时控制平面图形的精细尺寸和纵向深度,其加工难度更大。近几年来,在VLSI加工技术、电子、离
子刻蚀技术发展的推动下,二元光学制作工艺方面取得的进展集中表现在:从二值化相位元件向多阶相位元件
、甚至连续分布相位元件发展;从掩模套刻技术向无掩模直写技术发展。最早的二元光学制作工艺是用图形发
生器和VLSI技术制作二阶相位型衍射光学元件。到80年代后期,随着高分辨率掩模版制作技术的发展(如电子束
制版分辨率可达到0.1μm),掩模套刻、多次沉积薄膜的对中精度的提高,可以制作多阶相位二元光学元件,大
大提高了衍射效率。但是离散化的相位以及掩模的对准误差,仍影响二元光学元件的制作精度和衍射效率的提
高。为此,90年代初开始研究直写技术,省去掩模制作工序,直接利用激光和电子束在基底材料上写入所需的
二维或三维浮雕图案。利用这种直写技术,通过控制电子束在不同位置处的曝光量,或调制激光束强度,可以
刻蚀多阶相位乃至连续分布的表面浮雕结构。无掩模直写技术较适于制作单件的二元或多阶相位元件,或简单
的连续轮廓,而利用激光掩模和套刻制作更适合于复杂轮廓和成批生产。在掩模图案的刻蚀技术中,目前主要
采用高分辨率的反应离子刻蚀、薄膜沉积技术。其中离子束刻蚀的分辨率高达0.1μm,且图案边缘陡直准确
,是一种较为理想的加工手段。二元光学元件的一个很大的优点是便于复制,常用的复制技术有:铸造法
(casting)、模压法(embossing)和注入模压法(injection molding)。其中电铸成型模压复制将是未来大规模生
产的主要技术。根据二元光学元件的特点,其他一些新工艺,例如LIGA、溶胶-凝胶(sol-gel)、热溶及离子
扩散等技术也被应用于加工二元光学元件,还可利用灰阶掩模及PMMA紫外感光胶制作连续相位器件。 三、应
用方面的进展随着二元光学技术的发展,二元光学元件已广泛用于光学传感、光通信、光计算、数据存储、激
光医学、娱乐消费以及其他特殊的系统中。也许可以说,它的发展已经经历了三代。第一代,人们采用二元光
学技术来改进传统的折射光学元件,以提高它们的常规性能,并实现普通光学元件无法实现的特殊功能。这类
元件主要用于相差校正和消色差。通常是在球面折射透镜的一个面上刻蚀衍射图案,实现折/衍复合消像差和较
宽波段上的消色差。如美国柏金-爱尔马(Perkin-Elmer)公司成功地用于施密特(Schmidt)望远镜上消除球差
;美国豪奈威尔(Honey-well)公司在远红外系统中,实现了复消色差,它们还采用二元光学技术制作出小型光
盘读写头。此外,二元光学元件能产生任意波面以实现许多特殊功能,而具有重要的应用价值。如材料加工和
表面热处理中的光束整形元件、医疗仪器中的He-Ne激光聚焦校正器、光学并行处理系统中的光互连元件(等光
强分束Dammann光栅)以及辐射聚焦器等。二元光学元件的第一代应用技术已趋于成熟,国际上有50多家公司
正利用混合型特殊功能元件设计新型光学系统。第二代,主要应用于微光学元件和微光学阵列。 80年代末,二
元光学进入微光学领域,向微型化、阵列化发展,元件大小从十几个μm至1mm。用二元光学方法制作的高密
度微透镜阵列的衍射效率很高,且可实现衍射受限成像。另外,当刻蚀深度超过几个波长时,微透镜阵列表现
出普通的折射元件特性,并具有独特的优点:阵列结构比较灵活,可以是矩阵、圆形或密排六方形排列;能产
生各种轮廓形状的透镜表面,如抛物面、椭圆面及合成表面等;阵列透镜的“死区”可降到零(即填充因子达到
100%)。这类高质量的衍射或折射微透镜阵列,在光通信、光学信息处理、光存储和激光束扫描等许多领域中
有重要的应用。比如二元微光学元件在多通道微型传感系统中可作为望远混合光学系统、光束灵巧控制、多通
道处理、探测器阵列和自适应光互连。第三代,即目前正在发展的一代,二元光学瞄准了多层或三维集成微光
学,在成像和复杂的光互连中进行光束变换和控制。多层微光学能够将光的变换、探测和处理集成在一体,构
成一种多功能的集成化光电处理器,这一进展将使一种能按不同光强进行适应性调整、探测出目标的运动并自
动确定目标在背景中的位置的图像传感器成为可能。Veldkamp将这种新的二元光学技术与量子阱激光阵列或
SEED器件、CMOS模拟电子技术结合在一起,提出了“无长突神经细胞电子装置(Amacronic)”的设想,它把
焦平面结构和局域处理单元耦合在一起,以模仿视网膜上无长突神经细胞的近距离探测,系统具有边缘增强、
动态范围压缩和神经网络等功能。这一代微光学技术的典型应用是多层光电网络处理器。这是一种焦平面预处
理技术,它以二元光学元件提供灵活反馈和非线性预处理能力。探测器硅基片上的微透镜阵列将入射信号光聚
焦到阵列探测器的激活区,该基片的集成电路则利用会聚光激发砷化镓铟二极管发光,其发射光波第二层平面
石英基底两面的衍射元件引导到第三层面硅基底的阵列探测器上,经集成电路处理后激发二极管发光……依次类
推,得到处理后的信号。这种多层焦平面预处理器的每一层之间则利用微光学阵列实现互连耦合,它为传感器
的微型化、集成化和智能化开辟了新的途径。 发展趋势 二元光学是建立在衍射理论、计算机辅助设计和微细加
工技术基础上的光学领域的前沿科学之一,超精细结构衍射元件的设计与加工是发展二元光学的关键技术。二
元光学的发展不仅使光学系统的设计和加工工艺发生深刻的变革,而且其总体发展趋势是未来微光学、微电子
学和微机械的集成技术和高性能的集成系统。今后二元光学元件的研究将可能在以下方面发展。一、具有亚波
长结构的二元光学元件的研究(包括设计理论与制作技术) 这类元件的特征尺寸比波长还要小,其反射率、透射
率、偏振特性和光谱特性等都显示出与常规二元光学元件截然不同的特征,因而具有许多独特的应用潜力,如
可以作为抗反射元件、偏振元件、窄带滤波器和相位板。研究重点包括:建立正确和有效的理论模型设计超精
细结构衍射元件;特殊波面变换的算法研究;发展波前工程学,以制作*近临界尺寸的微小元件及开拓亚波长
结构衍射元件的应用,推动微光学的发展。二、二元光学的CAD软件包的开发至今尚未找到适合于不同浮雕衍
射结构的简单而有效的理论模型,二元光学元件的设计仍缺乏像普通光学设计程序那样,可以求出任意面形、
传递函数及系统像差、具有友好界面的通用软件包。但随着通用设计工具的发展,二元光学元件有可能成为通
用的标准光学元件,而得到广泛的应用,并与常规光学结合,形成一代崭新的光学系统。
三、微型光机电集成系统是二元光学研究的总趋势微光电机械系统微光机械微电子机械微机械 1991年,美国
国家关键技术委员会向美国总统提交了《美国国家关键技术》报告,其中第8项为“微米级和纳米级制造”,即
微工程技术,它主要包括微电子学、微机械学和微光学这三个相互关联相互促进的学科,是发展新一代计算机
、先进机器人及智能化系统,促进机械、电子及仪器仪表工业实现集成化、微型化的核心技术。二元光学技术
则是发展微光学的重要支柱,二元光学元件有可能直接刻蚀在集成电路芯片上,并在一块芯片上布置微光学阵
列,甚至完全集成化的光电处理单元,这将导致包含各种全新的超密集传感系统的产生。
微光电子学微光学微电子学图示描述了微工程技术的三个学科相互交*相互影响形成的交*学科。在微光学取得
令人注目的进展的同时,另一门前沿科学——微电子机械(MEM)学取得了飞速的发展,这种结合三维集成电路
处理技术的微机械方法已成功地用于改善传感器和执行器的性能,降低费用。基于这种新技术设计的微传感器
和微机械执行器,至少在一个维数上的尺寸已达到微米量级,其他维数也小于几个毫米,对军用、工业和消费
产品都有潜在的应用市场。 MEM和微光学技术的共同特征是它们都基于VLSI技术,两者的结合就能产生一个
新的、更宽广的微光电机械系统,它已经在激光扫描、光学开关、动态微透镜和集成光电-机电装置等方面显
示出诱人的前景和产品市场,并将进一步开拓到微分光仪、微干涉仪和小型在线机械检测系统等领域。在微机
械、微电子支撑下的微光学系统也更易商品化,从而形成二元光学产业。具有多层结构的Amacronic焦平面预
处理器是微光学、微电子学和微机械集成系统的典型应用,它以并行光学处理方式降低了对电子处理速度和带
宽的要求,增强了集成系统的处理能力和灵活性。多层微光电机械装置的进一步发展甚至可以模仿生物视觉原
理,这个方向的研究成果对于人类将有无法估量的意义。可以预见,光学工程师们能像今天的电子工程师们一
样,坐在计算机终端前,通过按动鼠标或敲击键盘来设计组合二元光学元件以及各种光机电组合系统,这一天
的到来为时不会太久。
留下邮箱,我发资料给你
已发你QQ邮箱
热心网友
时间:2023-08-05 18:56
二元光学是基于光波衍射理论发展起来的一个新兴光学分支,是光学与微电子技术相互渗透、交叉而形成的前沿学科。基于计算机辅助设计和微米级加工技术制成的平面浮雕型二元光学器件具有重量轻、易复制、造价低等特点,并能实现传统光学难以完成的微小、阵列、集成及任意波面变换等新功能,从而使光学工程与技术在诸如空间技术、激光加工、计算技术与信息处理、光纤通信及生物医学等现代国防科技与工业的众多领域中显示出前所未有的重要作用及广阔的应用前景。
参考资料:http://wenku.baidu.com/view/453a0f80d4d8d15abe234e3c.html