发布网友 发布时间:2023-10-15 18:32
共5个回答
热心网友 时间:2024-11-23 22:37
矩阵等价:
在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=Q-1AP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵,A经过有限次的初等变换得到B。
性质
1.矩阵A和A等价(反身性);
2.矩阵A和B等价,那么B和A也等价(等价性);
3.矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);
4.矩阵A和B等价,那么IAI=KIBI。(K为非零常数)
5.具有行等价关系的矩阵所对应的线性方程组有相同的解
6.对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征:
(1)矩阵可以通过基本行和列操作的而彼此变换。
(2)当且仅当它们具有相同的秩时,两个矩阵是等价的。
扩展资料:
证明
a1,a2,....an,线性无关,而a1,a2,....an,b,r线性相关,所以有x1a1+x2a2+....xnan+xb+yr=0,若y=0,则x1a1+x2a2+....xnan+xb=0,说明a1,a2,...an,b线性相关,同理x=0,可得a1,a2,....an,r线性相关。
若x,y都不为零,两边除以x可得-b=x1/x)a1+(x2/x)a2+...+(xn/x)an+(y/x)r,这表示b可以用a1,a2,....an,r.表示。若除以y可证明r可以用a1,a2,....an,b表示。这就说明a1,a2,....an,b与a1,a2,....an,r等价.综合可得命题得证。
当A和B为同型矩阵,且r(A)=r(B)时,A,B一定等价。
参考资料:百度百科-----等价矩阵
热心网友 时间:2024-11-23 22:38
你好!广泛意义的等价,是集合在某种变换下保持不变性。如:矩阵A与称为等价的,如果B可以是A经过一系列初等变换得到。矩阵在初等变换下是行列式不变的。在线性代数中,合同、相似都是等价关系热心网友 时间:2024-11-23 22:38
矩阵A,B等价,就是A经过初等变换能变为B,当然B也能用初等变换变为A。热心网友 时间:2024-11-23 22:39
两矩阵等价的充要条件是"两矩阵秩相同,且矩阵的大小相同",而秩相同是矩阵相似的必要条件,所以矩阵相似一定等价但是矩阵等价不一定相似,例如热心网友 时间:2024-11-23 22:39
定义:若由A经过一系列初等变换可得到矩阵B ,则称A与B等价. 若A与B等价,则B与A等价. 若A与B等价,B与C等价,则A与C等价. A与B等价<==秩(A)=秩(B) A与B等价<==A与B有相等的等价标准形 A与B等价<==存在可逆矩阵P,Q,使得PAQ=B