发布网友 发布时间:2023-10-15 03:57
共2个回答
热心网友 时间:2024-11-30 15:33
因果关联的推断标准有8个,其中关联的时间顺序是必须满足的;关联的强度,关联的可重复性,剂量反应关系及实验证据有非常重要的意义;其他标准可作为判断病因时的参考。
1,关联的时序性,指因与果出现的时间顺序,有因才有果,作为原因一定发生在结果之前,这在病因判断中是唯一要求必备的条件。(暴露因素与疾病发生的时间顺序,在前瞻性队列研究中容易判断,但在病例对照研究或横断面研究中则常常难以断定)。
2,关联的强度,指疾病与暴露因素之间关联程度的大小,常用OR或RR值来描述。在除外偏倚和随机误差的条件下,关联的强度可作为判别因果关系和建立病因假说的依据,关联强度越大存在因果关联的可能性也越大。
3,关联的可重复性,指某因素与某疾病的关联在不同研究背景下、不同研究者用不同的研究方法约可获得一致性的结论。重复出现的次数越多,因果推断越有说服力。
4,关联的特异性,指某因素只能引起某种特定的疾病,也就是说某种疾病的发生必须有某种因素的暴露才会出现。从传染病的病因研究角度来看,常可确立某病原微生物与某疾病之间的特异性因果关联。而从慢性非传染病角度来讲,大多情况下不易确立某因素与某疾病间的特异性。
5,剂量-反应关系,指某因素暴露的剂量、时间与某种疾病的发生之间存在的一种阶梯曲线,即暴露剂量越大、时间越长则疾病发生的概率也越大。
6,生物学合理性,指能从生物学发病机制上建立因果关联的合理性,即所观察到的因果关联可以用已知的生物学知识加以合理解释。
7,关联的一致性,指某因素与疾病之间的关联与该病已知的自然史和生物学原理相一致。
8,实验证据,指用实验方法证实去除可疑病因可引起某疾病发生频率的下降或消灭,则表明该因果关联存在终止效应,其作为因果关联的判定标准论证强度很高。实验证据可来自人群现场试验,也可来自临床试验或基础医学实验。
因果关系的判断是复杂的,在因果关系的判断中,并不一定要求8条标准全部满足。但满足的条件越多,则其因果关联成立的可能性越大,误判的可能性就越小。
扩展资料
一般来说,因果还可以指一系列因素(因)和一个现象(果)之间的关系。对某个结果产生影响的任何事件都是该结果的一个因素。直接因素是直接影响结果的因素,也即无需任何介入因素(介入因素有时又称中介因素)。从这个角度来讲,因果之间的关系也可以称为因果关联。
1,因果关系的客观性。因果关系作为客观现象之间引起与被引起的关系,它是客观存在的,并不以人们主观为转移。
2,因果关系的特定性。事物是普遍联系的,为了了解单个的现象,我们就必须把它们从普遍的联系中抽出来,孤立地考察它们,一个为原因,另一个为结果。刑法因果关系的特定性表现在它只能是人的危害行为与危害结果之间的因果联系。
3,因果关系的时间序列性。原因必定在先,结果只能在后,二者的时间顺序不能颠倒。在刑事案件中,只能从危害结果发生以前的危害行为中去查找原因。
参考资料来源:百度百科-因果关系
热心网友 时间:2024-11-30 15:33
定义及种类: 偏倚是在研究中(从设计到执行的各环节)的系统误差及解释结果的片面性而造成的,使研究结果与其真值出现了某些差值。因为它是由系统误差所造成,加大样本并不能使之减少。一旦造成事实,则无法消除其影响。因此,必须认识偏倚,从设计起直到整个研究过程均要加以控制。病因研究中的偏倚有10种以上,它们可以归纳为选择性偏倚、信息(测量、观察)性偏倚及混杂(混淆)性偏倚。 (一)选择性偏倚(selection bias) 在选择研究对象时,试验组和对照组的设立(纳入标准)不正确,使得这两组人在开始时即存在处理因素以外的重大差异,从而产生偏倚。常见的主要有: 1.就诊机会偏倚(入院率偏倚,admissionrate bias)由于疾病严重程度不同、就医条件不同、人群对某一疾病的了解和认识程度不同等原因而使患不同种类疾病的人(或有某种特性者)的住院率不同。从医院选取对照时,如果没有注意到此点,则可引起偏倚。此种偏倚首先由Berkson发现并记述,因此,将此种偏倚又称为Berkson偏倚或Berkson谬误(fallacy)。 2.现患病例及新发病例偏倚(prevalence-incidencebias,又叫Neyman bias)此种偏倚易出现在病程较短的严重致死性疾病,如心肌梗死,部分病例在送到医院前已死亡,如果只以存活的现患病例为对象,研究某因素的作用,必然产生偏倚。这些死亡病例通常未计入心肌梗死总发病人数中,以至于所报道的患病数少于实际的发病数。又如,在病例对照研究中有意或无意排除(或加入)某些病例,也可出现偏倚,如研究吸烟与肺癌的关系时,对照组包括了慢性支气管炎和冠心病,由于此二病均与吸烟有关,所以吸烟与肺癌的OR减低,甚至于看不出吸烟作为肺癌的病因作用。患病后改变生活习惯也可以使用病例对照方法探讨病因出现偏倚,如患肺癌后戒烟,患高血压后将饮食口味调淡、不吃动物脂肪(肥肉)、适当增加体力活动等等,都可在病例对照研究中使这些因素的病因作用被抵消。又如,乳腺癌与利血平关系的病例对照研究,在对照组中排除了心血管病人(其中有相当多的高血压病人,他们服用利血平),所以得出利血平是乳腺癌的危险因素的结论。另一个研究将全部病例均纳入,则未发现此相关。 3.检出信号偏倚(detectionsignal bias,unmasking bias)某因素如能引起或促进某症候(与所研究疾病的体征或症状类似)的出现,使患者因此而去就医,这就提高了该病的检出机会,使人误以为某因素与该病有因果联系。这种虚假联系造成的偏倚称为检出信号(或检出症候)偏倚。如,曾有研究发现子宫内膜癌与绝经期服用雌激素有关。这个研究结果是因为绝经期妇女服用雌激素会引起不规则子宫出血,因此而就医,得到检查子宫内膜的机会较多,从而增加了发现子宫内膜癌的机会。不服用雌激素的子宫内膜癌常无明显症状,发现机会较少。以刮宫或子宫切除作为诊断子宫内膜癌的诊断时,绝经期服用雌激素的OR为1.7,而以子宫出血就诊者的OR为9.8,二者相差悬殊。显然,以子宫出血就诊增高了OR。此类偏倚即检出信号偏倚。 4.无应答偏倚(non-responsebias)即研究对象对研究内容产生不同的反应而造成的偏倚。如用通信方式调查吸烟情况,不吸烟者与吸烟者的应答率可以相差悬殊。无应答者的暴露或患病状况与应答者可能不同。如果无应答者比例较高,则使以有应答者为对象的研究结果可能存在严重偏倚。所以在研究报告中必须如实说明应答率,并评价其对结果可能造成的影响。与一部分人无应答相反的情况是有一部分人特别乐意或自愿接受调查或测试。这些人往往是比较关心自身健康或自觉有某种疾病,而想得到检查机会的人。他们的特征或经历不能代表目标人群。由此造成的偏倚称为志愿者偏倚(volunteer bias)。 总之,无论什么原因使观察组与对照组成员不是来自同一总体,即可造成除研究因素以外的有关因素在两组分布不均衡,从而造成选择偏倚。 (二)衡量偏倚(measurement bias)或信息偏倚(information bias) 对观察组和对照组进行观察或测量时存在频度和(或)强度的差异,而使最终判断结果时出现偏倚。在非盲法观察时,由于观察者知道谁在观察组,、谁在对照组,更易出现此种偏倚。 1.回忆偏倚(recall bias)特别是在病例对照研究中,需要被观察者回忆过去的情况(甚至久远的情况,如癌的病因学研究),回忆的准确性会受到影响。病例组可能回忆仔细(特别是当怀疑某因素与某病有关时,如吸烟、被动吸烟与某些癌的关系,口服避孕药与下肢血栓性静脉炎、服雌激素与子宫内膜癌等),而对照组回忆则可能不那么仔细,尤其当研究者屡次提醒病例组有否这些因素时(诱导其回答,更容易出现偏倚-寻因性偏倚)。有时某种症状或状态的存在会诱导产生或加强其与某种因素的联系,如前段所举子宫内膜癌,得出与口服雌激素有联系的结论即属此,称为疑因性偏倚(exposure suspicion bias)。 2.疑诊偏倚 当观察者已知被观察者的某些情况时,在研究时会自觉不自觉地侧重询问、检查有关情况(如对服口服避孕药的妇女,仔细检查其有无下肢血栓性静脉炎,而对有下肢血栓性静脉炎的妇女仔细询问其口服避孕药的历史)就可能得出二者有联系的结论。但实际上可能是偏倚所致。 3.沾染偏倚(contaminationbias)对照组成员有意或无意应用了试验组的措施。如用低钠盐减少钠摄入与高血压关系的研究时,对照组成员同样可以购得低钠盐(因接受宣传后认为低钠盐可以防止高血压),从而使判断结果时出现偏倚(沾染性偏倚)。试验组成员有意或无意接受了研究因素以外的措施,而使结果有利于试验组,称为干扰。干扰与沾染最容易在非盲法观察的条件下发生。 (三)混杂(混淆)偏倚(confounding bias) 混杂(淆)因子存在时,在分析结果时可能错误地把某一因素当成某一结果的原因。即是存在混杂偏倚。前节曾谈到混杂因子。 混杂偏倚使研究结论不能反映真实的因果联系。这种偏倚的产生常常是研究者专业知识局限,不了解混杂的存在,或者虽然知道,但忽略了其存在。混杂偏倚常常在资料分析阶段显露出来。因而一旦认识后是可以设法纠正的。 混杂因素:①不是要研究的暴露因素,而是研究过程中常规地被收集起来的(如年龄、性别、吸烟、饮酒等生活习惯),是一个外部变量(extraneous variable);②是对研究的疾病的危险因素,或通过其他危险因素而间接起病因作用;③它与所研究的暴露因素之间有统计学的联系,但二者又是独立存在的。 应结合专业知识去考虑本次研究的结果,可能有什么混杂因素夸大或缩小了其效应指标(RR或OR)。根据可能的混杂因素分析校正的(adjusted)RR或OR(记为aRR或aOR),以与最初所得到的粗的(crude)RR或OR(记为cRR或cOR)比较。如果aRR与cRR或aOR与cOR相近似,则此因素非混杂因素,如相差大则为混杂因素。最常用的方法为按可疑的混杂因素进行分层分析。即是将有此因素的作为一层来比较其RR或OR,而将无此因素的作为另外一层来分析。也可以比较分层前后x2值,此时用Mantel-Haen-szel法比较。如分层前后无差别,则表示分层因素非混杂因素。还可比较分层校正前OR(cOR)与校正后OR(aOR),如有差异说明分层因素为混杂因素。 控制措施: (一)混杂偏倚 根据专业知识事先找出可能存在的混杂因素,在设计时注意去掉这些混杂因素。混杂出现在两组分配不均匀的情况,因此,尽量做到齐同对比以防止混杂因素的作用。 在资料分析阶段显现出来的混杂偏倚,可以按前节所述的方法加以纠正,如分层分析,也可用多元回归分析及标准化等方法加以处理,以识别混杂因素的影响。 (二)选择偏倚及衡量(测量)偏倚 这些偏倚是在科研设计及观察阶段所产生,主要因为设计不周及(或)测量带有倾向性而造成。带有方向性,不能以加大样本量加以减少,一旦形成之后即无法弥补,很可能需要重新进行。因此,从设计之初就要考虑到各个环节可能出现的偏倚,而加以防止,一般应注意以下几点: 1.设计方案及研究方法的选择 应当选择论证强度大的设计方案。 为避免选择性偏倚,首先的设计方案应是随机对照设计方案。有严格的诊断标准和纳入标准的队列研究方案也较好。由于病例对照研究在临床较易执行,因此,较多使用。此时必须注意严格选定有代表性的研究对象(病例及对照),使病例与对照均衡,资料可靠、分析正确,或应用多因素分析方法。 2.严格限定纳入标准 规定纳入与排除的标准。病例与对照的诊断应有“金标准”。尽可能采取随机分组法。病例对照研究使用配比法,可使病例与对照组有良好的可比性。测量和判定结果时实行盲法,尽量应用客观指标。分析时采用分层分析法及对率进行标准化等等。要有良好的科研作风及严谨的科学态度,争取病人良好的依从性及减少失访率。