发布网友 发布时间:2022-04-29 22:59
共2个回答
热心网友 时间:2022-06-25 06:04
一次函数的实例一次函数(linear function),也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。基本定义 变量:变化的量(可取不同值) 常量:不变的量(固定不变) 自变量k和X的一次函数y有如下关系: y=kx+b (k为任意不为零常数,b为任意常数) 当x取一个值时,y有且只有一个值与x对应。如果有2个及以上个值与x对应时,就不是一次函数。 x为自变量,y为因变量,k为常量,y是x的一次函数。 特别的,当b=0时,y是x的正比例函数。即:y=kx (k为常量,但K≠0)正比例函数图像经过原点。 定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际相符合。相关性质 函数性质 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k≠0) (k不等于0,且k,b为常数) 2.当x=0时,b为函数在y轴上的,坐标为(0,b). 3.k为一次函数y=kx+b的斜率,k=tanΘ(角Θ为一次函数图象与x轴正方向夹角,Θ≠90°) 形、取、象、交、减。 4.当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数. 5.当两直线中的k相同,b也相同时,两直线重合 当两直线中的k相同,b不相同时,两直线平行 当两直线中的k不相同,b不相同时,两直线相交 当两直线中的k不相同,b相同时,两直线交于y轴上的同一点(0,b) 图像性质 1.作法与图形:通过如下3个步骤 (1)列表 (2)描点;[一般取两个点,根据“两点确定一条直线”的道理]; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点分别是-k分之b与0,0与b) 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。 3.函数不是数,它是指某一变化过程中两个变量之间的关系。 4.k,b与函数图像所在象限: y=kx时(即b等于0,y与x成正比例): 当k>0时,直线必通过第一、三象限,y随x的增大而增大; 当k<0时,直线必通过第二、四象限,y随x的增大而减小。 y=kx+b时: 当 k>0,b>0, 这时此函数的图象经过第一、二、三象限。 当 k>0,b<0, 这时此函数的图象经过第一、三、四象限。 当 k<0,b>0, 这时此函数的图象经过第一、二、四象限。 当 k<0,b<0, 这时此函数的图象经过第二、三、四象限。 当b>0时,直线必通过第一、二象限; 当b<0时,直线必通过第三、四象限。 特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。当k<0时,直线只通过第二、四象限,不会通过第一、三象限。 4、特殊位置关系 当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等 当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1) [编辑本段]与二元一次方程的关系一、区别和联系 区别:(1)二元一次方程有两个未知数,而一次函数则有两个变量;(2)二元一次方程用一个等式表示两个未知数的关系,而一次函数既可以用一个等式表示两个变量之间的关系,又可以用列表或图象来表示两个变量之间的关系。 联系:(1)在平面直角坐标系中分别描绘出以二元一次方程的解为坐标的点,这些点都在相应的一次函数的图象上。如方程2x+y=5有无数组解,像x=1,y=3;x=2,y=1;…以这些解为坐标的点(1,3)(2,1)…都在一次函数y=-2x+5的图象上. (2)在一次函数图象上任取一点,它的坐标都适合相应的二元一次方程.如在一次函数y=-x+2的图象上任取一点(-3,3),则x=-3,y=3一定是二元一次方程x+y=2的一组解. 所以,以二元一次方程的解为坐标的所有点组成的图象与相应的一次函数的图象是相同的。 二、两个本函数图象交点与方程组解的联系 在同一平面直角坐标系中,两个一次函数图象的交点坐标就是相应的二元一次方程组的解。反过来,以二元一次方程组的解为坐标的点,一定是相应的两个一次函数的图象的交点。 三、方程组无解时相应函数图象的关系 当二元一次方程组无解时,相应的两个一次函数在平面直角坐标系中的图象就没有交点,即两个一次函数图象平行。反过来,当两个一次函数图象平行时,相应的二元一次方程组就无解。如二元一次方程组3x-y=5,3x-y=-1无解,则一次函数y=3x-5与y=3x+1的图象平行,反之也成立。 四、用作图的方法解二元一次方程组 用作图的方法解二元一次方程组,一般有下列几个步骤:(1)将相应的二元一次方程改写成一次函数的解析式;(2)在同一平面直角坐标系内作出这两个一次函数的图象;(3)找出图象的交点坐标,即得二元一次方程组的解。 初二的一次函数应该就是学这些,在深入的要到高一的直线解析方程才会学,希望以上内容能够帮助你热心网友 时间:2022-06-25 06:04
若两个变量x,y间的关系式可以表示成y=kx+b(k.b为常数,k不=0)的形式就称y是x的一次函数