发布网友 发布时间:2023-11-06 17:44
共1个回答
热心网友 时间:2024-08-24 04:49
关于辛钦大数定律和切比雪夫大数定律的区别分享如下:
概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。概率论中讨论随机变量序列的算术平均值向随机变量各数学期望的算术平均值收敛的定律。
在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律。通俗地说,这个定理就是,在试验不变的条件下,重复试验多次,随机事件的频率近似于它的概率。偶然中包含着某种必然。大数定律分为弱大数定律和强大数定律。
我们知道,大数定律研究的是随机现象统计规律性的一类定理,当我们大量重复某一相同的实验的时候,其最后的实验结果可能会稳定在某一数值附近。就像抛硬币一样,当我们不断地抛,抛个上千次,甚至上万次,我们会发现,正面或者反面向上的次数都会接近一半。
除了抛硬币,现实中还有许许多多这样的例子,像掷骰子,最著名的实验就是蒲丰投针实验。这些实验都像我们传达了一个共同的信息,那就是大量重复实验最终的结果都会比较稳定。
那稳定性到底是什么?怎样去用数学语言把它表达出来?这其中会不会有某种规律性?是必然的还是偶然的?
这一系列问题其实就是大数定律要研究的问题。很早的时候,人们其实就发现了这一规律性现象,也有不少的数学家对这一现象进行了研究,这其中就包括伯努利(后来人们为了纪念他,都认为他是第一个研究这一问题的人,其实在他之前也早有数学家研究过)。
伯努利在1713年提出了一个极限定理,当时这个定理还没有名称,后来人们称这个定理为伯努利大数定律。因此概率论历史上第一个有关大数定律的极限定理是属于伯努利的,它是概率论和数理统计学的基本定律,属于弱大数定律的范畴。
当大量重复某一实验时,最后的频率无限接近事件概率。而伯努利成功地通过数学语言将现实生活中这种现象表达出来,赋予其确切的数学含义。
他让人们对于这一类问题有了新的认识,有了更深刻的理解,为后来的人们研究大数定律问题指明了方向,起到了引领作用,其为大数定律的发展奠定了基础。
除了伯努利之外,还有许许多多的数学家为大数定律的发展做出了重要的贡献,有的甚至花了毕生的心血,像德莫佛—拉普拉斯,李雅普诺夫,林德伯格,费勒,切比雪夫,辛钦等等。这些人对于大数定律乃至概率论的进步所起的作用都是不可估量的。