发布网友 发布时间:2022-04-29 13:18
共5个回答
热心网友 时间:2022-06-28 17:33
t检验的适用条件:
1、已知一个总体均数;
2、可得到一个样本均数及该样本标准差;
3、样本来自正态或近似正态总体。
t检验主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。t检验是戈斯特为了观测酿酒质量而发明的,并于1908年在Biometrika上公布。
扩展资料:
选用的检验方法必须符合其适用条件(注意:t检验的前提:来自正态分布总体;随机样本 ;均数比较时,要求两样本总体方差相等,即具有方差齐性) 。理论上,即使样本量很小时,也可以进行t检验。(如样本量为10,一些学者声称甚至更小的样本也行),只要每组中变量呈正态分布,两组方差不会明显不同。
如上所述,可以通过观察数据的分布或进行正态性检验估计数据的正态假设。方差齐性的假设可进行F检验,或进行更有效的Levene's检验。如果不满足这些条件,可以采用校正的t检验,或者换用非参数检验代替t检验进行两组间均值的比较。
参考资料来源:百度百科-t检验
热心网友 时间:2022-06-28 17:34
应用条件
1、已知一个总体均数;
2、可得到一个样本均数及该样本标准差;
3、样本来自正态或近似正态总体。
注意事项
1、选用的检验方法必须符合其适用条件(注意:t检验的前提:来自正态分布总体; 随机样本 ;均数比较时,要求两样本总体方差相等,即具有方差齐性)。
理论上,即使样本量很小时,也可以进行t检验。(如样本量为10,一些学者声称甚至更小的样本也行),只要每组中变量呈正态分布,两组方差不会明显不同。如上所述,可以通过观察数据的分布或进行正态性检验估计数据的正态假设。
方差齐性的假设可进行F检验,或进行更有效的Levene's检验。如果不满足这些条件,可以采用校正的t检验,或者换用非参数检验代替t检验进行两组间均值的比较。
2、区分单侧检验和双侧检验。单侧检验的界值小于双侧检验的界值,因此更容易拒绝,犯第Ⅰ错误的可能性大 。t检验中的p值是接受两均值存在差异这个假设可能犯错的概率。在统计学上,当两组观察对象总体中的确不存在差别时,这个概率与我们拒绝了该假设有关。
一些学者认为如果差异具有特定的方向性,我们只要考虑单侧概率分布,将所得到t-检验的P值分为两半。另一些学者则认为无论何种情况下都要报告标准的双侧t检验概率。
3、假设检验的结论不能绝对化。当一个统计量的值落在临界域内,这个统计量是统计上显著的,这时拒绝虚拟假设。当一个统计量的值落在接受域中,这个检验是统计上不显著的,这是不拒绝虚拟假设H0。因为,其不显著结果的原因有可能是样本数量不够拒绝H0 ,有可能犯第Ⅰ类错误。
4、正确理解P值与差别有无统计学意义 。P越小,不是说明实际差别越大,而是说越有理由拒绝H0 ,越有理由说明两者有差异,差别有无统计学意义和有无专业上的实际意义并不完全相同。
5、假设检验和可信区间的关系结论具有一致性差异:提供的信息不同区间估计给出总体均值可能取值范围,但不给出确切的概率值,假设检验可以给出H0成立与否的概率。
6、涉及多组间比较时,慎用t检验。科研实践中,经常需要进行两组以上比较,或含有多个自变量并控制各个自变量单独效应后的各组间的比较,(如性别、药物类型与剂量),此时,需要用方差分析进行数据分析,方差分析被认为是t检验的推广。
在较为复杂的设计时,方差分析具有许多t-检验所不具备的优点。(进行多次的t检验进行比较设计中不同格子均值时)。
由来
学生t检验是威廉·戈塞为了观测酿酒品质于1908年所提出的,“学生 (student)”则是他的笔名。
基于克劳德·健力士(Claude Guinness)聘用从牛津大学和剑桥大学出来的最好的毕业生,以将生物化学及统计学应用到健力士工业流程的创新*,戈塞受雇于都柏林的健力士酿酒厂担任统计学家。戈塞提出了t检验以降低啤酒重量监控的成本。
戈塞于1908年在《Biometrika》期刊上公布t检验,但因其老板认为其为商业机密而*使用笔名,统计学论文内容也跟酿酒无关。实际上,其他统计学家是知道戈塞真实身份的。
应用
1、单样本检验:检验一个正态分布的总体的均值是否在满足零假设的值之内,例如检验一群军校男生的身高的平均是否符合全国标准的170公分界线。
2、独立样本t检验(双样本):其零假设为两个正态分布的总体的均值之差为某实数,例如检验二群人之平均身高是否相等。若两总体的方差是相等的情况下(同质方差),自由度为两样本数相加再减二;若为异方差(总体方差不相等),自由度则为Welch自由度,此情况下有时被称为Welch检验。
3、配对样本t检验(成对样本t检验):检验自同一总体抽出的成对样本间差异是否为零。例如,检测一位病人接受治疗前和治疗后的肿瘤尺寸大小。若治疗是有效的,我们可以推定多数病人接受治疗后,肿瘤尺寸将缩小。
4、检验一回归模型的偏回归系数是否显著不为零,即检验解释变量X是否存在对被解释变量Y的解释能力,其检验统计量称之为t-比例(t-ratio)。
以上内容参考 百度百科-t检验
热心网友 时间:2022-06-28 17:34
t检验,主要运用于样本含量较少(一般n<30),总体标准差σ未知的正态分布资料。热心网友 时间:2022-06-28 17:35
t检验是用于可以计数的样本热心网友 时间:2022-06-28 17:36
t检验种类很多,有均值检验、显著性检验等。一般来说,若总体方差未知,需要用样本方差来替代的情况,用t检验。