发布网友 发布时间:2022-04-29 11:14
共3个回答
热心网友 时间:2022-06-26 18:39
直角三角形是一个几何图形,是有一个角为直角的三角形,有普通的直角三角形和等腰直角三角形两种。其符合勾股定理,具有一些特殊性质和判定方法。
直角三角形如图所示:分为两种情况,有普通的直角三
角形,还有等腰直角三角形(特殊情况)在直角三角形中,与直角相邻的两条边称为直角边,直角所对的边称为斜边。直角三角形直角所对的边也叫作“弦”。若两条直角边不一样长,短的那条边叫作“勾”,长的那条边叫作“股”。
等腰直角三角形是一种特殊的三角形
等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:具有稳定性、内角和为180°。两直角边相等,两锐角为45°,斜边上中线、角平分线、垂线三线合一,等腰直角三角形斜边上的高为此三角形外接圆的半径R。
它除了具有一般三角形的性质外,具有一些特殊的性质:
1、直角三角形两直角边的平方和等于斜边的平方。如图,∠BAC=90°,则AB²+AC²=BC²(勾股定理)
2、在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。
4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
5、如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
射影定理图
(1)(AD)²=BD·DC。
(2)(AB)²=BD·BC。
(3)(AC)²=CD·BC。
射影定理,又称“欧几里德定理”:在直角三角形中,斜边上的高是两条直角边在斜边的射影的比例中项,每一条直角边又是这条直角边在斜边上的射影和斜边的比例中项。是数学图形计算的重要定理。
6、在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
证明方法多种,下面采取较简单的几何证法。
先证明定理的前半部分,Rt△ABC中,∠ACB=90°,∠A=30°,那么BC=AB/2
∵∠A=30°
∴∠B=60°(直角三角形两锐角互余)
取AB中点D,连接CD,根据直角三角形斜边中线定理可知CD=BD
∴△BCD是等边三角形(有一个角是60°的等腰三角形是等边三角形)
∴BC=BD=AB/2
再证明定理的后半部分,Rt△ABC中,∠ACB=90°,BC=AB/2,那么∠A=30°
取AB中点D,连接CD,那么CD=BD=AB/2(直角三角形斜边上的中线等于斜边的一半)
又∵BC=AB/2
∴BC=CD=BD
∴∠B=60°
∴∠A=30°
7、如图,
在Rt△ABC中∠BAC=90°,AD是斜边上的高,则:
证明:S△ABC=1/2*AB*AC=1/2*AD*BC
两边乘以2,再平方得AB*AC=AD*BC
运用勾股定理,再两边除以
,最终化简即得
性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
判定方法
编辑
判定1:有一个角为90°的三角形是直角三角形。
判定2:若
,则以a、b、c为边的三角形是以c为斜边的直角三角形(勾股定理的逆定理)。
判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么这个三角形为直角三角形。
判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。参考直角三角形斜边中线定理
判定7:一个三角形30°角所对的边等于某一邻边的一半,则这个三角形为直角三角形。
判定3和7的证明:
已知△ABC中,∠A=30°,∠A,∠C对的边分别为a,c,且a=
c。求证∠C=90°
证法1:
正弦定理,在△ABC中,有a:sinA=c:sinC
将a与c的关系及∠A的度数代入之后化简得sinC=1
又∵0<∠C<180°
∴∠C=90°
证法2
反证法,假设∠ACB≠90°,过B作BD⊥AC于D
在Rt△ABD中,∵∠ADB=90°,∠A=30°
∴BD=
AB(30°的直角边等于斜边的一半)
又∵BC=
AB
∴BC=BD
但BD是B到直线AC的垂线段,根据垂线段最短可知BD<BC,从而出现矛盾。
(或从BC=BD得∠BCD=∠BDC=90°,那么△BCD中就有两个直角,这是不可能的事情)
∴假设不成立,∠ACB=90°
证法3
利用三角形的外接圆证明
作△ABC的外接圆,设圆心为O,连接OC,OB
∵∠BAC=30°,A在圆上
∴∠BOC=60°
∵OB=OC=半径r
∴△BOC是等边三角形,BC=OC=r
又∵AB=2BC=2r
∴AB是直径
∴∠ACB=90°(直径所对的圆周角是直角)
希望我能帮助你解疑释惑。
热心网友 时间:2022-06-26 18:40
制作复杂的表格,用微软Excel还是用wps软件好? 我想固定一个软件熟悉工作,谢谢!热心网友 时间:2022-06-26 18:40
已知线段的两个投影,可利用直角三角形法,求出线段的实长及对投影面的倾斜角。