已知关于x的一元一次方程5x-k=k x+2有整数解,那么满足条件的所有整数k=_
发布网友
发布时间:2022-04-29 10:05
我来回答
共1个回答
热心网友
时间:2023-10-14 03:01
5x - k = kx + 2
5x - kx = 2 + k
(5 - k)x = 2 + k
x = (2 + k)/(5 - k)
= - (k + 2)/(k - 5)
= - ( k - 5 + 7)/(k -5)
= - (k - 5)/(k - 5) + 7/(k - 5) = - 1 + 7/(k - 5)
因为方程有整数解, 所以 7/(k - 5)必须为整数,
因此 k - 5 = ± 1 或 k - 5 = ± 7
当 k - 5 = - 1时, k = 4 当 k - 5 = 1 时, k = 6
当 k - 5 = - 7时, k = - 2 当 k - 5 = 7时, k = 12
综上所述,满足条件的所有整数k是 4, 6, - 2, 12
热心网友
时间:2023-10-14 03:01
5x - k = kx + 2
5x - kx = 2 + k
(5 - k)x = 2 + k
x = (2 + k)/(5 - k)
= - (k + 2)/(k - 5)
= - ( k - 5 + 7)/(k -5)
= - (k - 5)/(k - 5) + 7/(k - 5) = - 1 + 7/(k - 5)
因为方程有整数解, 所以 7/(k - 5)必须为整数,
因此 k - 5 = ± 1 或 k - 5 = ± 7
当 k - 5 = - 1时, k = 4 当 k - 5 = 1 时, k = 6
当 k - 5 = - 7时, k = - 2 当 k - 5 = 7时, k = 12
综上所述,满足条件的所有整数k是 4, 6, - 2, 12
热心网友
时间:2023-10-14 03:01
5x - k = kx + 2
5x - kx = 2 + k
(5 - k)x = 2 + k
x = (2 + k)/(5 - k)
= - (k + 2)/(k - 5)
= - ( k - 5 + 7)/(k -5)
= - (k - 5)/(k - 5) + 7/(k - 5) = - 1 + 7/(k - 5)
因为方程有整数解, 所以 7/(k - 5)必须为整数,
因此 k - 5 = ± 1 或 k - 5 = ± 7
当 k - 5 = - 1时, k = 4 当 k - 5 = 1 时, k = 6
当 k - 5 = - 7时, k = - 2 当 k - 5 = 7时, k = 12
综上所述,满足条件的所有整数k是 4, 6, - 2, 12
热心网友
时间:2023-11-05 03:59
5x - k = kx + 2
5x - kx = 2 + k
(5 - k)x = 2 + k
x = (2 + k)/(5 - k)
= - (k + 2)/(k - 5)
= - ( k - 5 + 7)/(k -5)
= - (k - 5)/(k - 5) + 7/(k - 5) = - 1 + 7/(k - 5)
因为方程有整数解, 所以 7/(k - 5)必须为整数,
因此 k - 5 = ± 1 或 k - 5 = ± 7
当 k - 5 = - 1时, k = 4 当 k - 5 = 1 时, k = 6
当 k - 5 = - 7时, k = - 2 当 k - 5 = 7时, k = 12
综上所述,满足条件的所有整数k是 4, 6, - 2, 12