设A,B都是n阶对称矩阵,证明AB是对称矩阵的充分必要条件是AB=BA
发布网友
发布时间:2022-04-29 13:46
我来回答
共2个回答
热心网友
时间:2022-06-29 06:30
简单计算一下即可,答案如图所示
热心网友
时间:2022-06-29 06:30
因为A,B都是n阶对称矩阵,故A=A',B=B'.
1)充分性.
由于AB=BA
所以(AB)'=(BA)'=A'B'=AB.
故AB是对称矩阵.
2)必要性.
由于AB是对称矩阵,得
(AB)'=AB,
B'A'=AB,
BA=AB.
故命题成立.