问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

hansen检验 指令是什么 stata

发布网友 发布时间:2022-04-20 08:18

我来回答

2个回答

热心网友 时间:2022-04-12 12:22

stata命令大全
********* 面板数据计量分析与软件实现 *********

说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。本人做了一定的修改与筛选。

*----------面板数据模型

* 1.静态面板模型:FE 和RE

* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计)

* 3.异方差、序列相关和截面相关检验

* 4.动态面板模型(DID-GMM,SYS-GMM)

* 5.面板随机前沿模型

* 6.面板协整分析(FMOLS,DOLS)

*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)

***
说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog生产函数,一步法与两步法的区别。常应用于地区经济差异、FDI溢出效应(Spillovers
Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型

*说明:STATA与Matlab结合使用。常应用于空间溢出效应(R&D)、财政分权、地方*公共行为等。

* ---------------------------------

* -------- 一、常用的数据处理与作图 -----------

* ---------------------------------

* 指定面板格式

xtset id year (id为截面名称,year为时间名称)

xtdes /*数据特征*/

xtsum logy h /*数据统计特征*/

sum logy h /*数据统计特征*/

*添加标签或更改变量名

label var h "人力资本"

rename h hum

*排序

sort id year /*是以STATA面板数据格式出现*/

sort year id /*是以DEA格式出现*/

*删除个别年份或省份

drop if year<1992

drop if id==2 /*注意用==*/

*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel格式,需要用egen命令)

egen year_new=group(year)

xtset id year_new

**保留变量或保留观测值

keep inv /*删除变量*/

**或

keep if year==2000

**排序

sort id year /*是以STATA面板数据格式出现

sort year id /*是以DEA格式出现

**长数据和宽数据的转换

*长>>>宽数据

reshape wide logy,i(id) j(year)

*宽>>>长数据

reshape logy,i(id) j(year)

**追加数据(用于面板数据和时间序列)

xtset id year

*或者

xtdes

tsappend,add(5) /表示在每个省份再追加5年,用于面板数据/

tsset

*或者

tsdes

.tsappend,add(8) /表示追加8年,用于时间序列/

*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)

bysort year:corr Y X Z,cov

**生产虚拟变量

*生成年份虚拟变量

tab year,gen(yr)

*生成省份虚拟变量

tab id,gen(m)

**生成滞后项和差分项

xtset id year

gen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/

gen ylag2=L2.y

gen dy=D.y /*产生差分项*/

*求出各省2000年以前的open inv的平均增长率

collapse (mean) open inv if year<2000,by(id)

变量排序,当变量太多,按规律排列。可用命令

aorder

或者

order fdi open insti

*-----------------

* 二、静态面板模型

*-----------------

*--------- 简介 -----------

* 面板数据的结构(兼具截面资料和时间序列资料的特征)

use proct.dta, clear

browse

xtset id year

xtdes

* ---------------------------------

* -------- 固定效应模型 -----------

* ---------------------------------

* 实质上就是在传统的线性回归模型中加入 N-1 个虚拟变量,

* 使得每个截面都有自己的截距项,

* 截距项的不同反映了个体的某些不随时间改变的特征

*

* 例如: lny = a_i + b1*lnK + b2*lnL + e_it

* 考虑中国29个省份的C-D生产函数

*******-------画图------*

*散点图+线性拟合直线

twoway (scatter logy h) (lfit logy h)

*散点图+二次拟合曲线

twoway (scatter logy h) (qfit logy h)

*散点图+线性拟合直线+置信区间

twoway (scatter logy h) (lfit logy h) (lfitci logy h)

*按不同个体画出散点图和拟合线,可以以做出fe vs re的初判断*

twoway (scatter logy h if id<4) (lfit logy h if id<4) (lfit logy h if
id==1) (lfit logy h if id==2) (lfit logy h if id==3)

*按不同个体画散点图,so beautiful!!!*

graph twoway scatter logy h if id==1 || scatter logy h if id==2,msymbol(Sh)
|| scatter logy h if id==3,msymbol(T) || scatter logy h if id==4,msymbol(d) || ,
legend(position(11) ring(0) label(1 "北京") label(2 "天津") label(3 "河北") label(4
"山西"))

**每个省份logy与h的散点图,并将各个图形合并

twoway scatter logy h,by(id) ylabel(,format(%3.0f))
xlabel(,format(%3.0f))

*每个个体的时间趋势图*

xtline h if id<11,overlay legend(on)

* 一个例子:中国29个省份的C-D生产函数的估计

tab id, gen(m)

list

* 回归分析

reg logy logk logl m*,

est store m_ols

xtreg logy logk logl, fe

est store m_fe

est table m_ols m_fe, b(%6.3f) star(0.1 0.05 0.01)

* Wald 检验

test logk=logl=0

test logk=logl

* stata的估计方法解析

* 目的:如果截面的个数非常多,那么采用虚拟变量的方式运算量过大

* 因此,要寻求合理的方式去除掉个体效应

* 因为,我们关注的是 x 的系数,而非每个截面的截距项

* 处理方法:

*

* y_it = u_i + x_it*b + e_it (1)

* ym_i = u_i + xm_i*b + em_i (2) 组内平均

* ym = um + xm*b + em (3) 样本平均

* (1) - (2), 可得:

* (y_it - ym_i) = (x_it - xm_i)*b + (e_it - em_i) (4) /*within estimator*/ *
(4)+(3), 可得:

* (y_it-ym_i+ym) = um + (x_it-xm_i+xm)*b + (e_it-em_i+em)

* 可重新表示为:

* Y_it = a_0 + X_it*b + E_it

* 对该模型执行 OLS 估计,即可得到 b 的无偏估计量

**stata后台操作,揭开fe估计的神秘面纱!!!

egen y_meanw = mean(logy), by(id) /*个体内部平均*/

egen y_mean = mean(logy) /*样本平均*/

egen k_meanw = mean(logk), by(id)

egen k_mean = mean(logk)

egen l_meanw = mean(logl), by(id)

egen l_mean = mean(logl)

gen dyw = logy - y_meanw

gen dkw = logk - k_meanw

gen dlw=logl-l_meanw

reg dyw dkw dlw,nocons

est store m_stata

gen dy = logy - y_meanw + y_mean

gen dk = logk - k_meanw +k_mean

gen dl=logl-l_meanw+l_mean

reg dy dk dl

est store m_stata

est table m_*, b(%6.3f) star(0.1 0.05 0.01)

* 解读 xtreg,fe 的估计结果

xtreg logy h inv gov open,fe

*-- R^2

* y_it = a_0 + x_it*b_o + e_it (1) pooled OLS

* y_it = u_i + x_it*b_w + e_it (2) within estimator

* ym_i = a_0 + xm_i*b_b + em_i (3) between estimator

*

* --> R-sq: within 模型(2)对应的R2,是一个真正意义上的R2

* --> R-sq: between corr{xm_i*b_w,ym_i}^2

* --> R-sq: overall corr{x_it*b_w,y_it}^2

*

*-- F(4,373) = 855.93检验除常数项外其他解释变量的联合显著性

*

*
*-- corr(u_i, Xb) = -0.2347

*

*-- sigma_u, sigma_e, rho

* rho = sigma_u^2 / (sigma_u^2 + sigma_e^2)

dis e(sigma_u)^2 / (e(sigma_u)^2 + e(sigma_e)^2)

*

* 个体效应是否显著?

* F(28, 373) = 338.86 H0: a1 = a2 = a3 = a4 = a29

* Prob > F = 0.0000 表明,固定效应高度显著

*---如何得到调整后的 R2,即 adj-R2 ?

ereturn list

reg logy h inv gov open m*

*---拟合值和残差

* y_it = u_i + x_it*b + e_it

* predict newvar, [option]

/*

xb xb, fitted values; the default

stdp calculate standard error of the fitted values

ue u_i + e_it, the combined resial

xbu xb + u_i, prediction including effect

u u_i, the fixed- or random-error component

e e_it, the overall error component */

xtreg logy logk logl, fe

predict y_hat

predict a , u

predict res,e

predict cres, ue

gen ares = a + res

list ares cres in 1/10

* ---------------------------------

* ---------- 随机效应模型 ---------

* ---------------------------------

* y_it = x_it*b + (a_i + u_it)

* = x_it*b + v_it

* 基本思想:将随机干扰项分成两种

* 一种是不随时间改变的,即个体效应 a_i

* 另一种是随时间改变的,即通常意义上的干扰项 u_it

* 估计方法:FGLS

* Var(v_it) = sigma_a^2 + sigma_u^2

* Cov(v_it,v_is) = sigma_a^2

* Cov(v_it,v_js) = 0

* 利用Pooled OLS,Within Estimator, Between Estimator

* 可以估计出sigma_a^2和sigma_u^2,进而采用GLS或FGLS

* Re估计量是Fe估计量和Be估计量的加权平均

* yr_it = y_it - theta*ym_i

* xr_it = x_it - theta*xm_i

* theta = 1 - sigma_u / sqrt[(T*sigma_a^2 + sigma_u^2)]

* 解读 xtreg,re 的估计结果

use proct.dta, clear

xtreg logy logk logl, re

*-- R2

* --> R-sq: within corr{(x_it-xm_i)*b_r, y_it-ym_i}^2

* --> R-sq: between corr{xm_i*b_r,ym_i}^2

* --> R-sq: overall corr{x_it*b_r,y_it}^2

* 上述R2都不是真正意义上的R2,因为Re模型采用的是GLS估计。

*

* rho = sigma_u^2 / (sigma_u^2 + sigma_e^2)

dis e(sigma_u)^2 / (e(sigma_u)^2 + e(sigma_e)^2)

*

* corr(u_i, X) = 0 (assumed)

* 这是随机效应模型的一个最重要,也*该模型应用的一个重要假设

* 然而,采用固定效应模型,我们可以粗略估计出corr(u_i, X)

xtreg market invest stock, fe

*

* Wald chi2(2) = 10962.50 Prob> chi2 = 0.0000

*-------- 时间效应、模型的筛选和常见问题

*---------目录--------

* 7.2.1 时间效应(双向固定(随机)效应模型)

* 7.2.2 模型的筛选

* 7.2.3 面板数据常见问题

* 7.2.4 面板数据的转换

* ----------------------------------

* ------------时间效应--------------

* ----------------------------------

* 单向固定效应模型

* y_it = u_i + x_it*b + e_it

* 双向固定效应模型

* y_it = u_i + f_t + x_it*b + e_it

qui tab year, gen(yr)

drop yr1

xtreg logy logk logl yr*, fe

* 随机效应模型中的时间效应

xtreg logy logk logl yr*, fe

* ---------------------------------

* ----------- 模型的筛选 ----------

* ---------------------------------

* 固定效应模型还是Pooled OLS?

xtreg logy logk logl yr*, fe /*Wald 检验*/

qui tab id, gen(m) /*LR检验*/

reg logy logk logl /*POLS*/

est store m_ols

reg logy logk logl m*,nocons

est store m_fe

lrtest m_ols m_fe

est table m_*, b(%6.3f) star(0.1 0.05 0.01)

* RE vs Pooled OLS?

* H0: Var(u) = 0

* 方法一:B-P 检验

xtreg logy logk logl, re

xttest0

* FE vs RE?

* y_it = u_i + x_it*b + e_it

*--- Hausman 检验 ---

* 基本思想:如果 Corr(u_i,x_it) = 0, Fe 和 Re 都是一致的,但Re更有效

* 如果 Corr(u_i,x_it)!= 0, Fe 仍然有效,但Re是有偏的

* 基本步骤

***情形1:huasman为正数

xtreg logy logk logl, fe

est store m_fe

xtreg logy logk logl, re

est store m_re

hausman m_fe m_re

*** 情形2:

qui xtreg logy h inv gov open,fe

est store fe

qui xtreg logy h inv gov open,re

est store re

hausman fe re

* Hausman 检验值为负怎么办?

* 通常是因为RE模型的基本假设 Corr(x,u_i)=0 无法得到满足

* 检验过程中两个模型的方差-协方差矩阵都采用Fe模型的

hausman fe re, sigmaless

* 两个模型的方差-协方差矩阵都采用Re模型的

hausman fe re, sigmamore

*== 为何有些变量会被drop掉?

use nlswork.dta, clear

tsset idcode year

xtreg ln_wage hours tenure ttl_exp, fe /*正常执行*/

* 产生种族虚拟变量

tab race, gen(m_race)

xtreg ln_wage hours tenure ttl_exp m_race2 m_race3, fe

* 为何 m_race2 和 m_race3 会被 dropped ?

* 固定效应模型的设定:y_it = u_i + x_it*b + e_it (1)

* 由于个体效应 u_i 不随时间改变,

* 因此若 x_it 包含了任何不随时间改变的变量,

* 都会与 u_i 构成多重共线性,Stata会自动删除之。

*******异方差、序列相关和截面相关问题

* ---------------- 简 介 -------------

* y_it = x_it*b + u_i + e_it

*

* 由于面板数据同时兼顾了截面数据和时间序列的特征,

* 所以异方差和序列相关必然会存在于面板数据中;

* 同时,由于面板数据中每个截面(公司、个人、国家、地区)之间还可能存在内在的联系, * 所以,截面相关性也是一个需要考虑的问题。

*

* 此前的分析依赖三个假设条件:

* (1) Var[e_it] = sigma^2 同方差假设

* (2) Corr[e_it, e_it-s] = 0 序列无关假设

* (3) Corr[e_it, e_jt] = 0 截面不相关假设

*

* 当这三个假设无法得到满足时,便分别出现 异方差、序列相关和截面相关问题; * 我们一方面要采用各种方法来检验这些假设是否得到了满足;

* 另一方面,也要在这些假设无法满足时寻求合理的估计方法。

* ---------------- 假设检验 -------------

*== 组间异方差检验(截面数据的特征)

* Var(e_i) = sigma_i^2

* Fe 模型

xtreg logy logk logl, fe

xttest3

* Re 模型

* Re本身已经较大程度的考虑了异方差问题,主要体现在sigma_u^2上

*== 序列相关检验

* Fe 模型

* xtserial Wooldridge(2002),若无序列相关,则一阶差分后残差相关系数应为-0.5

xtserial logy logk logl

xtserial logy logk logl, output

* Re 模型

xtreg logy logk logl, re

xttest1 /*提供多个统计检验量*/

*== 截面相关检验

* xttest2命令 H0: 所有截面残差的相关系数都相等

xtreg logy logk logl, fe

xttest2

* 由于检验过程中执行了SUE估计,所以要求T>N

xtreg logy logk logl if id<6, fe

xttest2

* xtcsd 命令(提供了三种检验方法)

xtreg logy logk logl, fe

xtcsd , pesaran /*Pesaran(2004)*/

xtcsd , friedman /*Friedman(1937)*/

xtreg logy logk logl, re

xtcsd , pesaran

* ----------------- 估计方法 ---------------------

*== 异方差稳健型估计

xtreg logy h inv gov open, fe robust

est store fe_rb

xtreg logy h inv gov open, fe robust

est store fe

* 结果对比

esttab fe_rb fe, b(%6.3f) se(%6.3f) mtitle(fe_rb fe)

*== 序列相关估计

* 一阶自相关 xtregar, fe/re

* 模型: y_it = u_i + x_it*b + v_it (1)

* v_it = rho*v_it-1 + z_it (2)

xtregar logy h inv gov open, fe

est store fe_ar1

xtregar logy h inv gov open,fe lbi /*Baltagi-Wu LBI test*/

热心网友 时间:2022-04-12 13:40

xtset id year
xtreg y x,fe
xtreg y x,re
hausman fe re
p<0.05则拒绝原假设,选择固定效应
当Hausman 检验值为负时

使用hausman fe re, sigmaless/hausman fe re, sigmamore即可
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
大伙说说洗衣机要不要带烘干好 热烘干洗衣机怎么样 ef英语哪个好 EF英孚英语培训怎么样? 英孚英语好不好 EF英孚教育到底好不好 大佬们,麦芒7和荣耀10那个值得入手?2500以下的机子还有啥好推荐的么... 介绍几款2500元以前的手机 像素一定要高 其他的不做要求 近期想入手一部安卓手机,价格2200到2500左右…买HTC desire Z还是 三星... 笔记本忘记开机密码怎么办急死了 stata在哪可以学 stata软件中,命令d,tab,sum起什么作用,请根据... stata相关系数显著性检验检验命令 stata 怎么取消前一步的命令 stata中dir命令是什么意思 STATA中DID政策实施年份不一样的如何画图 如何在stata中实现psmdid和平行趋势检验呢? 多期DID如何近邻匹配怎么做 stata进行did分析,att值显著,did不显著怎么回事? 怎么让Stata循环执行do命令 Stata怎样创建双重差分(DID)的变量 求问要怎么用STATA或EVIEWS做DID模型的检验啊, stata命令有哪些? 用stata处理did模型需要哪些数据 statado命令怎么标颜色 如何在stata中使用DID apple watch不配iphone可以用么 取“born sun”为英文名好吗,首先考虑了它跟我的中... 莎士比亚作品中的经典句子 莎士比亚的哈姆雷特的独白的翻译? 有两个月的截面数据怎么求熵权 内生性检验方法 有没有那啥直播网?没病毒的? Stata不能指令不能退出一直提示‘’cannot be read a... 快递的分拨中心在哪里? 求印度舞 蒙格尼的音乐 Live is a fucking movie是什么意思? 如何进入QQ聊天室?要下载什么软件? 谁知道这个直播是谁,直播间ID是什么 如何在小程序中快速搭建直播带货聊天室——接入篇 雅马哈调音台mg12xu录音软件雅马哈调音台怎样连接... 求今天晚上中超网上直播网站! room第一坊直播平台二站 小米电视第三方直播软件怎么自启 谁有免费的3D电脑学车软件给我发一个 感激不尽 在哪可以看iphone5的直播发布会???谢谢了~~~具体的... live on和live in的区别 11月11日中央五直播NBA火箭与小牛的比赛完了 播放的歌 哪个网站上可以看年代秀,大家给推荐一个安全的网站吧 怎么将直播回放上的视频发给微信好友?