集合,区间,不等式有什么区别?
发布网友
发布时间:2023-11-05 07:47
我来回答
共1个回答
热心网友
时间:2024-12-15 08:24
这是三个不同的概念,我先简单描述一下:
(1)集合:具有相同性质的一些事物构成的整体;
(2)不等式:由不等号(≠、>、<、≥、≤)连接的式子;
(3)区间:数轴上连续的一段;分为闭区间、开区间等;
可见,集合是一个外延很宽泛的概念;不等式本质和等式一样,表示的是两个事物(通常是数字或表示数字的字母)之间的一种关系;区间,则很明显就是一种“数集”——或者说是数集的一种表示形式,当然也就是集合的一种了。
所以:
(1)在数集范围内,能用集合的地方,也肯定都能用区间来表示——除非这个集合中有零散的数字而不是一个“数字范围”。比如:
(1,,100)={x|1<x<100};
[1,50)∪(50,100]={x|1≤x≤100且x≠50};
(2)不等式跟上面两个概念就不是一回事了。区间本身就是集合,而不等式充其量只是集合的“描述”的一部分——从(1)中的例子可见一斑。虽然有时候也会用它来表示一个数字范围,但这其实只是一种“简写”或“简称”。
例如:不等式x>1,可以用来表示区间(1,+∞)上的数字;但实际上,表示这个区间的不是这个不等式,而是这个不等式的“解集”。
不等式只是一个关系式,而“解集”则是一个集合。只要确定了一个不等式,那它的解集也就随之确定,因此我们有时候会简单地用不等式指称一个数集。
除了区间表示法,不等式的解集也可以用“标准的”、描述法表示的集合来表示。比如上面的例子,其解集可记作:{x|x>1}。
从形式上,这个集合的表示式只比原不等式多了一对大括号和几个其他符号,但鉴于数学语言的严谨与明确,我们应该清楚地知道它们的区别。