发布网友 发布时间:2022-04-29 19:03
共1个回答
热心网友 时间:2022-06-21 11:12
就技术层面而言,WWiSE建议案标示着802.11实作功能的重大进步,主要特点包括:
强制使用已经核准、现已存在且全球适用的20MHz Wi-Fi通道宽度,确保它在任何电信法规要求下都能立即使用和部署。
更强的MIMO-OFDM技术,它是在2×2组态配置和一个20 MHz通道的最低要求下达到135 Mbps最大数据速率、进而降低实作成本的关键。这种技术还能大幅改善简单的天线延伸或信道汇整技术。
利用4×4 MIMO架构和40 MHz通道宽度(只要主管单位允许)实现的540 Mbps最高数据速率,它能替未来的装置和应用提供持续发展的蓝图。
强制模式提供与5 GHz和2.4 GHz频带内现有Wi-Fi装置的向后兼容性与互用性,确保已安装的设备仍能获得强大支持。
先进的FEC编码功能帮助实现最大覆盖率和联机距离,它适用于所有的MIMO组态和通道带宽。 2.3.1、802.11n来龙去脉
在当今各种无线局域网技术交织的战国时代,WLAN、蓝牙、HomeRF、UWB等竞相绽放,但IEEE802.11系列的WLAN是应用最广泛的。自从1997年IEEE802.11标准实施以来,先后有802.11b、802.11a、802.11g、802.11e、802.11f、802.11h、802.11i、802.11j等标准制定或者酝酿,但是WLAN依然面对着“四不一没有”的问题,即带宽不足、漫游不方便、网管不强大、系统不安全和没有杀手级的应用等。就像当今VoIP应用中一个全新的领域VoWLAN那样,虽被业内人士看作是WLAN最有希望的杀手级应用,却因为这四个“不”,很难进一步发展。
为了实现高带宽、高质量的WLAN服务,使无线局域网达到以太网的性能水平,802.11n应运而生。
2.3.1、500Mbps的美妙前景
在传输速率方面,802.11n可以将WLAN的传输速率由802.11a及802.11g提供的54Mbps提高到108Mbps,甚至高达500Mbps。这得益于将MIMO(多入多出)与OFDM(正交频分复用)技术相结合而应用的MIMO OFDM技术,这个技术不但提高了无线传输质量,也使传输速率得到极大提升。
应用前景:802.11n将使WLAN传输速率达到传输速率的10倍,而且可以支持高质量的语音、视频传输,这意味着人们可以在写字楼中用Wi-Fi手机来拨打IP电话和可视电话。
在覆盖范围方面,802.11n采用智能天线技术,通过多组独立天线组成的天线阵列,可以动态调整波束,保证让WLAN用户接收到稳定的信号,并可以减少其它信号的干扰。因此其覆盖范围可以扩大到好几平方公里,使WLAN移动性极大提高。
应用前景:这使得使用笔记本电脑和PDA可以在更大的范围内移动,可以让WLAN信号覆盖到写字楼、酒店和家庭的任何一个角落,让我们真正体验移动办公和移动生活带来的便捷和快乐。
在兼容性方面,802.11n采用了一种软件无线电技术,它是一个完全可编程的硬件平台,使得不同系统的基站和终端都可以通过这一平台的不同软件实现互通和兼容,这使得WLAN的兼容性得到极大改善。这意味着WLAN将不但能实现802.11n向前后兼容,而且可以实现WLAN与无线广域网络的结合,比如3G。 让人遗憾的是,802.11n现处于一种“标准滞后、产品早产”的尴尬境地。802.11n标准还没有得到IEEE的正式批准,但采用MIMO OFDM技术的厂商已经很多,包括Airgo、Bermai、Broadcom以及杰尔系统、Atheros、思科、Intel等等,产品包括无线网卡、无线路由器等,而且已经大量在PC、笔记本电脑中应用。
主导802.11n标准的技术阵营有两个,即WWiSE(World Wide Spectrum Efficiency)联盟和TGn Sync联盟。这两个阵营都希望在下一代无线局域网标准之争中处于优先地位,不过两大阵营的技术构架已经越来越相似,例如都是采用MIMO OFDM技术,而且有消息称,他们已经决定不计前嫌,共同向美国电气电子工程师学会(IEEE)递交了802.11n的无线技术版本。
在这激烈的竞争中,我们却看不到中国的身影,让我们不得不感到有些遗憾。这也是我们没有核心技术的后果。标准之争最终还是利益之争,中国企业很难在WLAN核心技术方面取得巨大效益,这是很值得人们深思的。 以前的无线传输技术,发展瓶颈就在覆盖范围和传输速率上。如果覆盖范围广,那传输的速度肯定会变慢;如果传输速度上去了,那么覆盖范围肯定要缩小。那么802.11n到底是如何去解决这些问题、如何去突破这个制约无线技术的瓶颈的呢?它包含了哪些具体的新技术呢?我们在这里将一一的去分析。
2.5.1、OFDM技术
OFDM技术是MCM(Multi -Carrier Molation,多载波调制)的一种。其核心是将信道分成许多正交子信道,在每个子信道上进行窄带调制和传输,这样减少了子信道之间的相互干扰。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的频率选择性衰落是平坦的,大大消除了符号间干扰,如图1所示。另外,由于在OFDM系统中各个子信道的载波相互正交,于是它们的频谱是相互重叠的,这样不但减小了子载波间的相互干扰,同时又提高了频谱利用率。
OFDM技术解析图
还有,OFDM技术通过使用不同数量的子信道来实现上行和下行链路中不同的传输速率,很好地解决了无线数据业务的非对称性传输问题。同时,OFDM系统还在某种程度上抑制了由于窄带干扰带来的影响。
尽管同单载波系统相比,OFDM还存在一些缺点,例如易受频率偏差的影响,存在较高的峰值平均功率比(PAR),但通过结合时空编码、分集、干扰(包括符号间干扰ISI和邻道干扰ICI)抑制以及智能天线技术,可以最大程度地提高物理层的可靠性。如再结合自适应调制、自适应编码以及动态子载波分配、动态比特分配算法等技术,可以使其性能进一步优化。
2.5.2、MIMO技术
多入多出(MIMO)技术是无线通信领域智能天线技术的重大突破。MIMO技术能在不增加带宽的情况下成倍地提高通信系统的容量和频谱利用率。
在室内,电磁环境较为复杂,多径效应、频率选择性衰落和其他干扰源的存在使得实现无线信道的高速数据传输比有线信道困难,多径效应会引起衰落,因而被视为有害因素。然而研究结果表明,对于MIMO系统来说,多径效应可以作为一个有利因素加以利用。MIMO系统在发射端和接收端均采用多天线(或阵列天线)和多通道。MIMO的多入多出是针对多径无线信道来说的,如图2所示。传输信息流S(k)经过空时编码形成N个信息子流Ci(k),i=1,……,N。这N个子流由N个天线发射出去,经空间信道后由M个接收天线接收。多天线接收机利用先进的空时编码处理能够分开并解码这些数据子流,从而实现最佳的处理。
MIMO技术解析图
特别是,这N个子流同时发送到信道,各发射信号占用同一频带,因而并未增加带宽。若各发射、接收天线间的通道响应独立,则MIMO系统可以创造多个并行空间信道。MIMO将多径无线信道与发射、接收视为一个整体进行优化,从而可实现高的通信容量和频谱利用率,这是一种近于最优的空域时域联合的分集和干扰对消处理。
2.5.3、MIMO OFDM技术
MIMO OFDM技术是通过在OFDM传输系统中采用阵列天线实现空间分集,提高了信号质量,是联合OFDM和MIMO而得到的一种新技术。它利用了时间、频率和空间三种分集技术,使无线系统对噪声、干扰、多径的容限大大增加,系统原理如图3所示。MIMO OFDM主要包括以下关键设计: 发送分集、空间复用、接收分集、干扰消除、软译码、信道估计、同步、自适应调制和编码等技术,其中的技术细节在此不再冗述。
MIMO OFDM技术解析图
2.5.4、MAC层优化技术
从网络逻辑结构上来看,802.11只定义了物理层及介质访问控制(MAC)子层。MAC层提供对共享无线介质的竞争使用和无竞争使用,具有无线介质访问、网络连接、数据验证和保密等功能。802.11n标准小组为了提升整个网络的吞吐量,对MAC层协议也进行了优化,改变数据帧结构,增加了净负载所占的比重,减少管理检错所占的字节数,大大提升了网络的吞吐量。
2.5.5、智能天线技术
智能天线是一个由多组独立天线组成的天线阵列系统,该阵列的输出与收发信机的多个输入相结合,可提供一个综合的时空信号。与单个天线不同的是,天线阵列系统能够动态地调整波束的方向,以使每个用户都获得最大的主瓣,并减小了旁瓣干扰。这样不仅改善了SINR(Signal-to- Interference and Noise Ratio,信号干扰和噪声比),还提高了系统的容量,扩大了小区的最大覆盖范围,减小了移动台的发射功率。智能天线的基本结构如图4所示。
智能天线技术解析图
智能天线技术保障了能够以不低于108Mbps的传输速率进行通信,同时可以作为蜂窝移动通信的宽带接入部分,与无线广域网更紧密地结合。一方面,802.11n可以为用户提供高数据率的通信服务(比如视频点播VOD、在线观看HDTV);另一方面,无线广域网为用户提供了更好的移动性。
2.5.6、软件无线电技术解决移动难题
无线局域网多种标准并存,不同标准采用不同的工作频段、不同的调制方式,造成系统间难以互通,移动性差,而软件无线电是一种最有希望解决这些问题的技术。
软件无线电是指研制出一个完全可编程的硬件平台,所有的应用都通过在该平台上的软件编程实现。换言之,不同系统的基站和移动终端都可以由建立在相同硬件基础上的不同软件实现。该技术将能保证各种移动台、各种移动通信设备之间的无缝集成,并大大降低了建设成本。
基于软件无线电的移动通信具有以下特点:
(1)在同一硬件平台上兼容不同的系统
(2)具有自动漫游能力,能在不同系统之间进行智能切换
(3)可以下载公用软件并进行自身的升级
(4)支持语音、数据、图像和传真等多种业务,并能根据业务流量,信道质量等情况,自动选择合适的传输信道
(5)自动选择通信模式,采用合适的通信协议和信号格式实现远端通信。
软件无线电在802.11n中的应用,将根本改变其网络结构,实现无线局域网与无线广域网融合并能容纳各种标准、协议,提供更为开放的接口,最终大大增加网络的灵活性。
作为一个新标准,与以前的802.11协议相比,IEEE802.11n无线局域网有两方面的优势。一是短期的优势,有较高的传输速率,数据传输速率达100Mbps以上,使无线局域网平滑地和有线网络结合,全面提升了网络吞吐量;二是长期的优势,今后无线局域网的产品可以使用双频方式,即在 2.4GHz和5.8GHz两个频段,基于MIMO+OFDM调制技术,提高数据传输速率。同时,802.11n的传输距离更远,容易与无线广域网融合。 802.11n肯定能够给WLAN带来真正的杀手级应用,想想在办公室我们可以不再使用手机、不再使用桌面电话,而是使用Wi-Fi手机,也可以使笔记本电脑不必中断网络连接而在各个办公室、会议室中移动办公。在家庭中,我们可以享受到各种宽带的无线应用,从IPTV到可视电话都可以通过WLAN实现,更重要的是各种智能家电都可以通过WLAN实现连接,与通信系统相连可以实现更加智能的控制。
802.11n像迷雾中的灯塔,已经离我们越来越近了。 使用开源软件无线电GNU Radio, BBN Technologies Internetwork Research BBN -BBN Technologies Internetwork Research ADROIT Project在DARPA 的赞助下编写802.11 代码。GNU Radio 是免费的软件开发工具套件。它提供信号运行和处理模块,用它可以在易制作的低成本的射频(RF)硬件和通用微处理器上实现软件定义无线电。这套套件广泛用于业余爱好者,学术机构和商业机构用来研究和构建无线通信系统。GNU Radio 的应用主要是用Python 编程语言来编写的。但是其核心信号处理模块是C++在带浮点运算的微处理器上构建的。因此,开发者能够简单快速的构建一个实时、高容量的无线通信系统。尽管其主要功用不是仿真器,GNU Radio 在没有射频RF 硬件部件的境况下支持对预先存储和(信号发生器)生成的数据进行信号处理的算法的研究。