发布网友 发布时间:2022-04-28 17:51
共3个回答
热心网友 时间:2022-06-21 06:13
求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。
看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。
加减的时候,把高阶的无穷小直接舍去如 1 + 1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来如 1/n * sin(1/n) 用1/n^2 来代替 。
设{xn}为一个无穷实数数列的集合。如果存在实数a,对于任意正数ε (不论其多么小),都N>0,使不等式|xn-a|<ε在n∈(N,+∞)上恒成立,那么就称常数a是数列{xn} 的极限,或称数列{xn}收敛于a。
扩展资料:
一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖性。但这并不意味着N是由ε唯一确定的。
比如若n>N使|xn-a|<ε成立,那么显然n>N+1、n>2N等也使|xn-a|<ε成立。重要的是N的存在性,而不在于其值的大小。
在(a-ε,a+ε)之外,数列{xn} 中的项至多只有N个(有限个)。换句话说,如果存在某 ε0>0,使数列{xn} 中有无穷多个项落在(a-ε0,a+ε0) 之外,则{xn} 一定不以a为极限。
热心网友 时间:2022-06-21 06:14
n趋于无穷大时,趋于某个确定的值就是收敛,否则就是发散的。热心网友 时间:2022-06-21 06:14
n趋于无穷大时,趋于某个确定的值就是收敛,否则就是发散的