双曲线焦点三角形面积公式是啥6
发布网友
发布时间:2023-10-05 12:53
我来回答
共3个回答
热心网友
时间:2024-10-29 17:52
设∠f
pf
=α
双曲线方程为x^2/a^2-y^2/b^2=1
因为p在双曲线上,由定义|pf
-pf
|=2a
在焦点三角形中,由余弦定理得
f
f
的平方=pf
平方+pf
平方-2pf
pf
cosα
=|pf
-pf
|平方+2pf
pf
-2pf
pf
cosα
(2c)^2=(2a)^2+2pf
pf
-2pf
pf
cosα
pf
pf
=[(2c)^2-(2a)^2]/2(1-cosα)
=2b^2/(1-cosα)
三角形的面积公式=1/2pf
pf
sinα
=b^2sinα/(1-cosα)
=b^2cot(α/2)
热心网友
时间:2024-10-29 17:53
解答:
设焦点为F1,F2,
实轴长为2a,虚轴长为2b
P在双曲线上,∠F1PF2=θ
则三角形PF1F2的面积是S=b²cot(θ/2)
热心网友
时间:2024-10-29 17:53
设∠F₁PF₂=α
双曲线方程为x^2/a^2-y^2/b^2=1
因为P在双曲线上,由定义|PF₁-PF₂|=2a
在焦点三角形中,由余弦定理得
F₁F₂的平方=PF₁平方+PF₂平方-2PF₁PF₂cosα
=|PF₁-PF₂|平方+2PF₁PF₂-2PF₁PF₂cosα
(2c)^2=(2a)^2+2PF₁PF₂-2PF₁PF₂cosα
PF₁PF₂=[(2c)^2-(2a)^2]/2(1-cosα)
=2b^2/(1-cosα)
三角形的面积公式=1/2PF₁PF₂sinα
=b^2sinα/(1-cosα)
=b^2cot(α/2)