已知函数f(x)=1/(1-x)+lg(1+x)/(1-x) ,解关于x的不等式f[(x(x+1)]>1
发布网友
发布时间:2022-04-27 08:23
我来回答
共1个回答
热心网友
时间:2023-09-14 16:49
先算定义域,得x∈(-1,1)
当x∈(-1,1)时f(x)=1/(1-x)+lg(1+x)-lg(1-x)
1/(1-x)单调增,lg(1+x)单调增,-lg(1-x)单调增
于是f(x)单调增
f(0)=1+0=1
f[x(x+1)]>1=f(0)
即1>x(x+1)>0
得0<x<(1/2)(-1+√5)