现在人脸识别最有效的算法是什么?
发布网友
发布时间:2022-04-27 06:28
我来回答
共3个回答
热心网友
时间:2022-06-27 16:58
最好的人脸识别系统在理想情况下比人类识别的表现要好的多。但是一旦环境情况变糟,系统的表现就差强人意了。而计算机科学家们当然是非常想要开发出一种算法,在各种情况下都能够表现优异。
现在,中国香港大学的汤晓鸥教授和他的学生路超超(音译)宣布他们攻克了这个难题。他们开发了一种叫“高斯”的人脸识别算法首次超过了人类自身。
新的识别系统对于各种平台都能够提供人类级别的识别能力,从手机到电脑游戏中的人脸识别,从安全系统到密码控制等等。
任何一个人脸自动识别程序,首先要考虑的就是去构建一个合适的数据集来测试算法。那需要一个非常大范围的,各种各样的,带着各种复杂动作、光线和表情的,不同脸的图像,各种人种、年龄和性别都要考虑在内。然后还要考察服装、发型以及化妆等其他因素的影响。
比较幸运的是,已经有这么一个拥有各种不同人脸的标准数据库——Labelled Faces。它拥有超过13,000张不同人脸的图片,它们是从网络上收集的6000个不同的公众人物。更重要的是,每个人都拥有不止一张人脸图片。
当然也存在其他的人脸数据库,但是Labelled faces目前是计算机科学家们所公认的最具参考价值的测试数据集。
面部识别的任务是去比较两张不同的图片,然后判断他们是否是同一个人。(你可以试试看,能否看出这里展示的每对图片是否是同一个人。)
人类在这个数据库上的表现可以达到97.53%的准确度。但是没有任何一个计算机算法能够达到这个成绩。
直到这个新算法的出现。新的算法依照5点图片特征,把每张脸图规格化成一个150*120的像素图,这些特征分别是:两只眼睛、鼻子和嘴角的位置。
然后,算法把每张图片划分成重叠的25*25像素的区域,并用一个数学向量来描述每一个区域的基本特征。做完了这些,就可以比较两张图片的相似度了。
但是首先需要知道的是到底要比较什么。这个时候就需要用到训练数据集了。一般的方法是使用一个独立的数据集来训练算法,然后用同一个数据集中的图片来测试算法。
但是当算法面对训练集中完全不同的两张图片的时候,经常都会识别失败。“当图片的分布发生改变的时候,这种训练方法就一点都不好了。”超超和晓鸥说到。
相反,他们用四个拥有不同图片的,完全不同的数据集来测试“高斯”算法。举个例子,其中一个数据集是著名的Multi-PIE数据库,它包含了 337个不同的物体,从15种不同的角度,在19种不同的光照情况下,分别拍摄4组图片。另一个数据库叫做Life Photes包含400个不同的人物,每个人物拥有10张图片。
用这些数据库训练了算法后,他们最终让新算法在Labelled Faces数据库上进行测试。目标是去识别出所有匹配和不匹配的图片对。
请记住人类在这个数据库上的表现是97.53%的精确度。“我们的“高斯”算法能够达到98.52%的精确度,这也是识别算法第一次击败人类。”超超和晓鸥说到。
这是一个令人印象深刻的结果,因为数据中的照片包含各种各样不同的情况。
超超和晓鸥指出,仍然有很多挑战在等着他们。现实情况中,人们可以利用各种附加的线索来识别,比如脖子和肩膀的位置。“超过人类的表现也许只是一个象征性的成就罢了”他们说。
另一个问题是花费在训练新算法上的时间,还有算法需要的内存大小以及识别两幅图所需要的时间。这可以用并行计算和特制处理器等技术来加快算法的运行时间。
总之,精确的人脸自动识别算法已经到来了,而且鉴于现在的事实,这只会更快。
热心网友
时间:2022-06-27 16:58
二维里面比较经典的pca与lda相结合的还不错。近年来算法上没有大的突破,基本都是各种组合。由于人脸的非刚性。识别不可能做到100%。。这个领域还不成熟呢,不像指纹识别。。
热心网友
时间:2022-06-27 16:59
你在这求助,还不如去搜搜论文看看,又不是让你自己独创个算法,这都搞不定,你还做人脸识别,这都不愿动脑,你还学个什么劲!!