发布网友 发布时间:2022-04-27 05:15
共1个回答
热心网友 时间:2022-06-26 19:29
摘要1.不包含是含于的符号去掉下面的“一”,再加上-条斜线2.真包含是含于号下面再加上“一”,和-根斜线,这样下面就是一个≠3.①不包含是两个完全不一样的集合。例如:A={1,2,3},B={7,8,9}那么可以说A不含于B,B不包含A②真包含是A中的任意一个元素在B中都可以找到,但A≠B,你可以理解为B>A.例如A={1,2,3},B={1,2,3,4,5},那么A真含于B扩展资料:集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。例如全中国人的集合,它的元素就是每一个中国人。我们通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。若x是集合S的元素,则称x属于S,记为x∈S。若y不是集合S的元素,则称y不属于S,记为y∉S。集合的性质:1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。2.互异性:集合中任意两个元素都是不同的对象。如写成{1,1,2},等同于{1,2}。互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。3.无序性:{a,b,c}{c,b,a}是同一个集合。4.纯粹性:所谓集合的纯粹性,用个例子来表示。集合A={x|x<2},集合A 中所有的元素都要符合x<2,这就是集合纯粹性。5.完备性:仍用上面的例子,所有符合x<2的数都在集合A中,这就是集合完备性。完备性与纯粹性是遥相呼应的。6.集合有以下性质:若A包含于B,则A∩B=A,A∪B=B咨询记录 · 回答于2021-12-14不包含于和真不包含于有什么区别1.不包含是含于的符号去掉下面的“一”,再加上-条斜线2.真包含是含于号下面再加上“一”,和-根斜线,这样下面就是一个≠3.①不包含是两个完全不一样的集合。例如:A={1,2,3},B={7,8,9}那么可以说A不含于B,B不包含A②真包含是A中的任意一个元素在B中都可以找到,但A≠B,你可以理解为B>A.例如A={1,2,3},B={1,2,3,4,5},那么A真含于B扩展资料:集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。例如全中国人的集合,它的元素就是每一个中国人。我们通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。若x是集合S的元素,则称x属于S,记为x∈S。若y不是集合S的元素,则称y不属于S,记为y∉S。集合的性质:1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。2.互异性:集合中任意两个元素都是不同的对象。如写成{1,1,2},等同于{1,2}。互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。3.无序性:{a,b,c}{c,b,a}是同一个集合。4.纯粹性:所谓集合的纯粹性,用个例子来表示。集合A={x|x<2},集合A 中所有的元素都要符合x<2,这就是集合纯粹性。5.完备性:仍用上面的例子,所有符合x<2的数都在集合A中,这就是集合完备性。完备性与纯粹性是遥相呼应的。6.集合有以下性质:若A包含于B,则A∩B=A,A∪B=B【集合_百度百科】https://mbd.baidu.com/ma/s/y95tJd7x希望可以帮到您真不包含的定义您好,就只有真包含和包含,真包含表示两个集合不可能相同且包含,而包含可能表示他们相同。x减bk等于零是怎么得出来的要步骤,首先他们是相似三角形,对边的比就等于周长比,一组对边比是K,其他边和周长比都是K,原题是什么两个三角形周长比等于一条直角边之比求证两三角形相似【若两个直角三角形的周长比等于一组对应的直角边之比.则这两个三角形相似吗?请说明理由. 题目和参*——青夏教育精英家教网——】http://m.1010jiajiao.com/czsx/shiti_id_acb70467760d69c6c769637c3778d3ae