发布网友 发布时间:2022-04-27 08:10
共2个回答
热心网友 时间:2022-06-28 23:00
一、协整检验(Cointegration Test)的定义:
非平稳序列很可能出现伪回归,协整的意义就是检验它们的回归方程所描述的因果关系是否是伪回归,即检验变数之间是否存在稳定的关系。所以,非平稳序列的因果关系检验就是协整检验。
二、基本思路:
20世纪80年代,Engle和Granger等人提出了协整(Co-integration)的概念,指出两个或多个非平稳(non-stationary)的时间序列的线性组合可能是平稳的或是较低阶单整的。有些时间序列,虽然它们自身非平稳,但其线性组合却是平稳的。非平稳时间序列的线性组合如果平稳,则这种组合反映了变量之间长期稳定的比例关系,称为协整关系。协整关系表达的是两个线性增长量的稳定的动态均衡关系,更是多个线性增长的经济量相互影响及自身演化的动态均衡关系。协整分析是在时间序列的向量自回归分析的基础上发展起来的空间结构与时间动态相结合的建模方法与理论分析方法。
三、理论模型:
四、协整检验的目的:
协整即存在共同的随机性趋势。协整检验的目的是决定一组非平稳序列的线性组合是否具有稳定的均衡关系,伪回归的一种特殊情况即是两个时间序列的趋势成分相同,此时可能利用这种共同趋势修正回归使之可靠。正是由于协整传递出了一种长期均衡关系,若是能在看来具有单独随机性趋势的几个变数之间找到一种可靠联系,那麽通过引入这种醉汉与狗之间距离的“相对平稳”对模型进行调整,可以排除单位根带来的随机性趋势,即所称的误差修正模型。
在进行时间系列分析时,传统上要求所用的时间系列必须是平稳的,即没有随机趋势或确定趋势,否则会产生“伪回归”问题。但是,在现实经济中的时间系列通常是非平稳的,我们可以对它进行差分把它变平稳,但这样会让我们失去总量的长期信息,而这些信息对分析问题来说又是必要的,所以用协整来解决此问题。
热心网友 时间:2022-06-28 23:01
在目前宏观经济计量分析中,Granger(1987)所提出的协整方法已成为了分析非平稳经济变量之间数量关系的最主要工具之一,且通过线性误差修正模型(ECM)刻画了经济变量之间的线性调整机制,这就是所谓的线性协整方法。近年来,随着经济理论的发展,尤其是交易成本和*反应的经济分析中,传统的线性协整分析已不再是合适的分析方法,鉴于此Balk和Fomby(1997)提出了所谓的阈值协整(Threshold Cointegraion)方法,它刻画了经济变量之间的非线性调整机制。如在股票交易过程中,由于交易费用、交易*等因素会导致股价的非对称调整;国家的货币*由于制度方面的原因也会对通货膨胀率产生非对称调整行为。因此阈值协整方*是分析这类经济问题的最有力的工具之一。阈值协整是对Granger(1987)提出的用来描述经济变量之间长期关系的协整概念的至关重要发展。众所周知,协整是指如果经济变量之间存在长期协整关系,且正则化协整向量是(1,-β′),则之间的长期均衡关系可以表示为: 其中:β参数是变量之间的协整系数向量,γ是阈值变量,d是转换变量,d是滞后参数,则这种协整称之为阈值协整。如果协整误差项是形如式(2)的数据生成机制,则称为Two-Regime的阈值协整;如果是形如式(3)的误差生成机制,则称为Three-Regime的阈值协整。在以前的研究中,对于式(2)和式(3)所表示的阈值协整,大多研究都集中在ρ、q、θ、λ四个参数都小于1的情形,而对其它情形研究较少(Enders和Granger(1998)[3])。本文主要研究如下情形,即: 此时式(2)和式(3)所表示的阈值协整即所谓的部分协整(Partial Cointegration)。针对部分协整检验,caner和Hansen(2001)提出一个统计量,且Gouveia和Rodrigues(2004)将该统计量应用阈值协整检验,但是他们并没有对该统计量的检验势进行研究。而在我们以前的研究中发现:该统计量在检验阈值协整时具有低势。