发布网友 发布时间:2022-04-29 09:41
共1个回答
热心网友 时间:2022-06-25 15:42
一、填空题.(每小题3分,共24分)
1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.
2.若x=-1是方程2x-3a=7的解,则a=_______.
3.当x=______时,代数式 x-1和 的值互为相反数.
4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.
5.在方程4x+3y=1中,用x的代数式表示y,则y=________.
6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.
7.已知三个连续的偶数的和为60,则这三个数是________.
8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.
二、选择题.(每小题3分,共30分)
9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).
A.0 B.1 C.-2 D.-
10.方程│3x│=18的解的情况是( ).
A.有一个解是6 B.有两个解,是±6
C.无解 D.有无数个解
11.若方程2ax-3=5x+b无解,则a,b应满足( ).
A.a≠ ,b≠3 B.a= ,b=-3
C.a≠ ,b=-3 D.a= ,b≠-3
12.把方程 的分母化为整数后的方程是( ).
13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于( ).
A.10分 B.15分 C.20分 D.30分
14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).
A.增加10% B.减少10% C.不增也不减 D.减少1%
15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米.
A.1 B.5 C.3 D.4
16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).
A.从甲组调12人去乙组 B.从乙组调4人去甲组
C.从乙组调12人去甲组
D.从甲组调12人去乙组,或从乙组调4人去甲组
17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.
A.3 B.4 C.5 D.6
18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )
A.3个 B.4个 C.5个 D.6个
三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)
19.解方程: -9.5.
20.解方程: (x-1)- (3x+2)= - (x-1).
21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.
22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:
车站名 A B C D E F G H
各站至H站
里程数(米) 1500 1130 910 622 402 219 72 0
例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).
(1)求A站至F站的火车票价(结果精确到1元).
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).
24.某公园的门票价格规定如下表:
购票人数 1~50人 51~100人 100人以上
票 价 5元 4.5元 4元
某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?
(2)两班各有多少名学生?(提示:本题应分情况讨论)
1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.
(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.
2.下列变形中:
①由方程 =2去分母,得x-12=10;
②由方程 x= 两边同除以 ,得x=1;
③由方程6x-4=x+4移项,得7x=0;
④由方程2- 两边同乘以6,得12-x-5=3(x+3).
错误变形的个数是( )个.
A.4 B.3 C.2 D.1
3.若式子5x-7与4x+9的值相等,则x的值等于( ).
A.2 B.16 C. D.
4.合并下列式子,把结果写在横线上.
(1)x-2x+4x=__________; (2)5y+3y-4y=_________;
(3)4y-2.5y-3.5y=__________.
5.解下列方程.
(1)6x=3x-7 (2)5=7+2x
(3)y- = y-2 (4)7y+6=4y-3
6.根据下列条件求x的值:
(1)25与x的差是-8. (2)x的 与8的和是2.
7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.
8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.
知能点2 用一元一次方程分析和解决实际问题
9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,桶中原有油多少千克?
10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.
11.小明每天早上7:50从家出发,到距家1000米的学校上学,每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,并且在途中追上了他.
(1)爸爸追上小明用了多长时间?
(2)追上小明时距离学校有多远?
12.已知y1=2x+8,y2=6-2x.
(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?
13.已知关于x的方程 x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程 -15=0的解.
14.编写一道应用题,使它满足下列要求:
(1)题意适合一元一次方程 ;
(2)所编应用题完整,题目清楚,且符合实际生活.
15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.
(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.
(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,并说明这样设计的理由(不考虑其他因素).
某中学修整草场,如果让初一学生单独工作,需要7.5小时完成;如果让初二学生单独做,需要5小时完成.如果让初一、初二学生一起工作1小时,再由初二学生单独完成剩余部分,共需多少时间完成?
2.甲骑车从A地到B地,乙骑车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人相距36千米,到中午12时,两人又相距36千米.求AB两地路程.
3一列火车从甲地开往乙地,每小时行90千米,行到一半时耽误了12分钟,当着列火车每小时加快10千米后,恰好按时到了乙地,求甲、乙两站距离?
解:设甲、乙两站距离为S千米,则有:
S/90=(S/2)/90+12/60+(S/2)/(90+10)
解得:S=360(千米)
答:甲乙两地距离为360千米。
4小明到外婆家去,若每小时行5千米,正好按预定时间到达,他走了全程的五分之一时,搭上了一辆每小时行40千米的汽车,因此比预定时间提前1小时24分钟到达,求小明与他外婆家的距离是多少千米
.解:设小明与他外婆家的距离为S千米,则有:
S/5=(S/5)/5+(4S/5)/40+(1+24/60)
解得:S=10(千米)
答:小明与他外婆家的距离为10千米
自己试着练习下,祝你成功!新年快乐!
1、某单位准备要去某地方旅行 该单位正在准备联系旅行社 A、B旅行社每位的费用都是300 A旅行社表明全部打8折付费 B旅行社表明一人免费 其余按9折付费 请问当该单位的人数为多少人去旅行时 两个旅行社的费用总额一样?
2、赵刚期末考试语文、数学、外语的成绩分别为三个连续偶数,其和为270 ,则数学成绩为多少?
3、现在对某商品降价百分之十促销,为了使销售总金额不变,销售量要比按原价销售时增加百分之几?
4、甲对乙说:"当我是你现在的年龄,你才4岁."乙对甲说:"当我是你现在的年龄时,你将61岁."问甲,乙现在的年龄各是多少?
5、一批文稿,如果甲抄30小时完成,乙抄20小时完成,现由甲抄3小时后该为乙抄余下部分,问乙尚需抄多少小时?
6、甲乙两人分别从相距60千米的AB两地骑摩托车出发去某地,甲在乙后面,甲每小时骑80千米,乙每小时骑45千米,若甲比乙早30分出发,问甲出发经过多长时间可以追上乙?
7、某飞机原定以每小时495千米的速度飞往目的地,后因任务紧急,飞行速度提高到每小时660千米,结果提前1小时到达,问总的航程是多少千米?
8、一瓶酱油先吃去0.6千克,后又吃去余下的3/5,瓶中酱油还有0.8千克。这瓶酱油原来有多少千克
9、一列货车和一列客车同时同地背向而行,当货车行5小时,客车行6小时后,两车相距568千米。已知货车每小时比客车快8千米。客车每小时行多少千米?
10、李欣骑自行车,刘强骑摩托车,同时从相距60千米的两地出发相向而行。途中相遇后继续前进背向而行。在出发后6小时,他们相距240千米。已知李欣每小时行18千米,求刘强每小时行多少千米?
11、甲、乙两人相距22.5千米,并分别以2.5千米/时与5千米/时的速度同时相向而行,同时甲所带的小狗以7.5千米/时的速度奔向乙,小狗遇乙后立即回头奔向甲,遇甲后又奔向乙……直到甲、乙两人相遇,求小狗所走的路程。
12、一辆汽车以每小时60千米的速度由甲地驶往乙地,当车行驶了4小时30分后,遇雨路滑,车不能开快,这样将速度每小时减少20千米,结果比预计时间晚45分钟到达乙地,求甲,乙两地的距离.
13、七年级学生去春游,如果减少一辆客车,每辆正好坐60人,如果增加一辆客车,每辆车正好坐45人,问七年级共有多少学生?
14、小刚和小明骑自行车去郊外游玩,事先决定早晨8时从家里出发,预计每时骑7.5千米,上午10时可到目的地。出发前他们又决定上午9时到达目的地。那么每时骑多少千米?
15、 某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元。该工厂的生产能力是:制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨。受人员*,这批牛奶必须在4天内全部销售或加工完毕。为此设计两种可行方案:
方案一:尽可能多的制成奶片,其余的直接销售鲜奶。
方案二:将一部分制成奶片,其余制成酸奶销售,并且恰好4天完成。
问:你认为选择哪种方案获利多?为什么?
2(x-2)-3(4x-1)=9(1-x)
2. 11x+64-2x=100-9x
3. 15-(8-5x)=7x+(4-3x)
4. 3(x-7)-2[9-4(2-x)]=22
5. 3/2[2/3(1/4x-1)-2]-x=2
6. 2(x-2)+2=x+1
7. 0.4(x-0.2)+1.5=0.7x-0.38
8. 30x-10(10-x)=100
9. 4(x+2)=5(x-2)
10. 120-4(x+5)=25
11. 15x+863-65x=54
12. 12.3(x-2)+1=x-(2x-1)
13. 11x+64-2x=100-9x
14. 14.59+x-25.31=0
15. x-48.32+78.51=80
16. 820-16x=45.5×8
17. (x-6)×7=2x
18. 3x+x=18
19. 0.8+3.2=7.2
20. 12.5-3x=6.5
21. 1.2(x-0.64)=0.54
22. x+12.5=3.5x
23. 8x-22.8=1.2
24. 1\ 50x+10=60
25. 2\ 60x-30=20
26. 3\ 3^20x+50=110
27. 4\ 2x=5x-3
28. 5\ 90=10+x
29. 6\ 90+20x=30
30. 7\ 691+3x=700
31 x+5=8
32 3x+5(138-x) = 540
33 x-5=3
1 2x-10.3x=15
2 0.52x-(1-0.52)x=80
3 x/2+3x/2=7
4 3x+7=32-2x
5 3x+5(138-x)=540
6 3x-7(x-1)=3-2(x+3)
7 18x+3x-3=18-2(2x-1)
8 3(20-y)=6y-4(y-11)
9 -(x/4-1)=5
10 3[4(5y-1)-8]=6
11 2(x-2)+2=x+1
12 2(x-2)-3(4x-1)=9(1-x)
13 x/3 -5 = (5-x)/2
14 2(x+1) /3=5(x+1) /6 -1
15 (1/5)x +1 =(2x+1)/4
1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完?
还要运x次才能完
29.5-3*4=2.5x
17.5=2.5x
x=7
还要运7次才能完
2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?
它的高是x米
x(7+11)=90*2
18x=180
x=10
它的高是10米
3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?
这9天中平均每天生产x个
9x+908=5408
9x=4500
x=500
这9天中平均每天生产500个
4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?
乙每小时行x千米
3(45+x)+17=272
3(45+x)=255
45+x=85
x=40
乙每小时行40千米
5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?
平均成绩是x分
40*87.1+42x=85*82
3484+42x=6970
42x=3486
x=83
平均成绩是83分
6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?
平均每箱x盒
10x=250+550
10x=800
x=80
平均每箱80盒
7、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?
平均每组x人
5x+80=200
5x=160
x=32
平均每组32人
8、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?
食堂运来面粉x千克
3x-30=150
3x=180
x=60
食堂运来面粉60千克
9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?
平均每行梨树有x棵
6x-52=20
6x=72
x=12
平均每行梨树有12棵
10、一块三角形地的面积是840平方米,底是140米,高是多少米?
高是x米
140x=840*2
140x=1680
x=12
高是12米
11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米?
每件儿童衣服用布x米
16x+20*2.4=72
16x=72-48
16x=24
x=1.5
每件儿童衣服用布1.5米
12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?
女儿今年x岁
30=6(x-3)
6x-18=30
6x=48
x=8
女儿今年8岁
13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?
需要x时间
50x=40x+80
10x=80
x=8
需要8时间
14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?
苹果x
3x+2(x-0.5)=15
5x=16
x=3.2
苹果:3.2
梨:2.7
15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点?
甲x小时到达中点
50x=40(x+1)
10x=40
x=4
甲4小时到达中点
16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。
乙的速度x
2(x+15)+4x=60
2x+30+4x=60
6x=30
x=5
乙的速度5
17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。问原来两根绳子各长几米?
原来两根绳子各长x米
3(x-15)+3=x
3x-45+3=x
2x=42
x=21
原来两根绳子各长21米
18.某校买来7只篮球和10只足球共付248元。已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?
每只篮球x
7x+10x/3=248
21x+10x=744
31x=744
x=24
每只篮球:24
每只足球:8
离去,乙参与工作,问还需几天完成?
知能点5:若干应用问题等量关系的规律
(1)和、差、倍、分问题 此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。 增长量=原有量×增长率 现在量=原有量+增长量 (2)等积变形问题
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. ①圆柱体的体积公式 V=底面积×高=S·h=r2h
②长方体的体积 V=长×宽×高=abc
22.某粮库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的7
5。问每个仓库各有多少粮食?
23.一个装满水的内*、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入
一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,≈3.14).
24.长方体甲的长、宽、高分别为260mm,150mm,325mm,长方体乙的底面积为130×130mm2,又知甲的体积是乙的体积的2.5倍,求乙的高?
知能点6:行程问题
基本量之间的关系: 路程=速度×时间 时间=路程÷速度 速度=路程÷时间 (1)相遇问题 (2)追及问题 快行距+慢行距=原距 快行距-慢行距=原距
(3)航行问题 顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.
25. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,
每小时行140公里。
(1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? (2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? 此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。
26. 甲乙两人在同一道路上从相距5千米的A、B两地同向而行,甲的速度为5千米/小时,乙的速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15千米/小时,求此过程中,狗跑的总路程是多少?
27. 某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。A、C两地之间的路程为10千米,求A、B两地之间的路程。
28.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.
29.已知甲、乙两地相距120千米,乙的速度比甲每小时快1千米,甲先从A地出发2小时后,乙
从B地出发,与甲相向而行经过10小时后相遇,求甲乙的速度?
30.一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18米/分的速度从队头至队尾又返回,已知队伍的行进速度为14米/分。问:若已知队长320米,则通讯员几分钟返回?若已知通讯员用了25分钟,则队长为多少米?
31.一架飞机在两个城市之间飞行,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求两个城市之间的飞行路程?
32.一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/时,求甲、乙两码头之间的距离。
知能点7:数字问题
(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c。然后抓住数字间或新数、原数之间的关系找等量关系列方程.
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。
33. 一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数.
34. 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数
找了很久 望采纳
追问亲,我只要方程啊。。再等等吧,这就是把几篇拼在一起了嘛。。。。。。