关于电子排布
发布网友
发布时间:2022-04-29 08:59
我来回答
共2个回答
热心网友
时间:2022-06-25 03:49
原子核外电子排布的原理
处于稳定状态的原子,核外电子将尽可能地按能量最低原理排布,另外,由于电子不可能都挤在一起,它们还要遵守保里不相容原理和洪特规则,一般而言,在这三条规则的指导下,可以推导出元素原子的核外电子排布情况,在中学阶段要求的前36号元素里,没有例外的情况发生。
1.最低能量原理
电子在原子核外排布时,要尽可能使电子的能量最低。怎样才能使电子的能量最低呢?比方说,我们站在地面上,不会觉得有什么危险;如果我们站在20层楼的顶上,再往下看时我们心理感到害怕。这是因为物体在越高处具有的势能越高,物体总有从高处往低处的一种趋势,就像自由落体一样,我们从来没有见过物体会自动从地面上升到空中,物体要从地面到空中,必须要有外加力的作用。电子本身就是一种物质,也具有同样的性质,即它在一般情况下总想处于一种较为安全(或稳定)的一种状态(基态),也就是能量最低时的状态。当有外加作用时,电子也是可以吸收能量到能量较高的状态(激发态),但是它总有时时刻刻想回到基态的趋势。一般来说,离核较近的电子具有较低的能量,随着电子层数的增加,电子的能量越来越大;同一层中,各亚层的能量是按s、p、d、f的次序增高的。这两种作用的总结果可以得出电子在原子核外排布时遵守下列次序:1s、2s、2p、3s、3p、4s、3d、4p……
2.保里不相容原理
我们已经知道,一个电子的运动状态要从4个方面来进行描述,即它所处的电子层、电子亚层、电子云的伸展方向以及电子的自旋方向。在同一个原子中没有也不可能有运动状态完全相同的两个电子存在,这就是保里不相容原理所告诉大家的。根据这个规则,如果两个电子处于同一轨道,那么,这两个电子的自旋方向必定相反。也就是说,每一个轨道中只能容纳两个自旋方向相反的电子。这一点好像我们坐电梯,每个人相当于一个电子,每一个电梯相当于一个轨道,假设电梯足够小,每一个电梯最多只能同时供两个人乘坐,而且乘坐时必须一个人头朝上,另一个人倒立着(为了充分利用空间)。根据保里不相容原理,我们得知:s亚层只有1个轨道,可以容纳两个自旋相反的电子;p亚层有3个轨道,总共可以容纳6个电子;f亚层有5个轨道,总共可以容纳10个电子。我们还得知:第一电子层(K层)中只有1s亚层,最多容纳两个电子;第二电子层(L层)中包括2s和2p两个亚层,总共可以容纳8个电子;第3电子层(M层)中包括3s、3p、3d三个亚层,总共可以容纳18个电子……第n层总共可以容纳2n2个电子。
3.洪特规则
从光谱实验结果总结出来的洪特规则有两方面的含义:一是电子在原子核外排布时,将尽可能分占不同的轨道,且自旋平行;洪特规则的第二个含义是对于同一个电子亚层,当电子排布处于
全满(s2、p6、d10、f14)
半满(s1、p3、d5、f7)
全空(s0、p0、d0、f0)时比较稳定。这类似于我们坐电梯的情况中,要么电梯是空的,要么电梯里都有一个人,要么电梯里都挤满了两个人,大家都觉得比较均等,谁也不抱怨谁;如果有的电梯里挤满了两个人,而有的电梯里只有一个人,或有的电梯里有一个人,而有的电梯里没有人,则必然有人产生抱怨情绪,我们称之为不稳定状态。
二、核外电子排布的方法
对于某元素原子的核外电子排布情况,先确定该原子的核外电子数(即原子序数、质子数、核电荷数),如24号元素铬,其原子核外总共有24个电子,然后将这24个电子从能量最低的1s亚层依次往能量较高的亚层上排布,只有前面的亚层填满后,才去填充后面的亚层,每一个亚层上最多能够排布的电子数为:s亚层2个,p亚层6个,d亚层10个,f亚层14个。最外层电子到底怎样排布,还要参考洪特规则,如24号元素铬的24个核外电子依次排列为
1s22s22p63s23p64s23d4
根据洪特规则,d亚层处于半充满时较为稳定,故其排布式应为:
1s22s22p63s23p64s13d5
最后,按照人们的习惯“每一个电子层不分隔开来”,改写成
1s22s22p63s23p63d54s1
即可。
三、核外电子排布在中学化学中的应用
1.原子的核外电子排布与轨道表示式、原子结构示意图的关系:原子的核外电子排布式与轨道表示式描述的内容是完全相同的,相对而言,轨道表示式要更加详细一些,它既能明确表示出原子的核外电子排布在哪些电子层、电子亚层上, 还能表示出这些电子是处于自旋相同还是自旋相反的状态,而核外电子排布式不具备后一项功能。原子结构示意图中可以看出电子在原子核外分层排布的情况,但它并没有指明电子分布在哪些亚层上,也没有指明每个电子的自旋情况,其优点在于可以直接看出原子的核电荷数(或核外电子总数)。
2.原子的核外电子排布与元素周期律的关系
在原子里,原子核位于整个原子的中心,电子在核外绕核作高速运动,因为电子在离核不同的区域中运动,我们可以看作电子是在核外分层排布的。按核外电子排布的3条原则将所有原子的核外电子排布在该原子核的周围,发现核外电子排布遵守下列规律:原子核外的电子尽可能分布在能量较低的电子层上(离核较近);若电子层数是n,这层的电子数目最多是2n2个;无论是第几层,如果作为最外电子层时,那么这层的电子数不能超过8个,如果作为倒数第二层(次外层),那么这层的电子数便不能超过18个。这一结果决定了元素原子核外电子排布的周期性变化规律,按最外层电子排布相同进行归类,将周期表中同一列的元素划分为一族;按核外电子排布的周期性变化来进行划分周期
如第一周期中含有的元素种类数为2,是由1s1~2决定的
第二周期中含有的元素种类数为8,是由2s1~22p0~6决定的
第三周期中含有的元素种类数为8,是由3s1~23p0~6决定的
第四周期中元素的种类数为18,是由4s1~23d0~104p0~6决定的。
由此可见,元素原子核外电子排布的规律是元素周期表划分的主要依据,是元素性质周期性变化的根本所在。对于同族元素而言,从上至下,随着电子层数增加,原子半径越来越大,原子核对最外层电子的吸引力越来越小,最外层电子越来越容易失去,即金属性越来越强;对于同周期元素而言,随着核电荷数的增加,原子核对外层电子的吸引力越来越强,使原子半径逐渐减小,金属性越来越差,非金属性越来越强。
3.元素原子的核外电子排布与元素的化学性质
元素的化学性质直接决定于该元素原子的核外电子排布情况,如碱金属元素的最外层电子结构可表示为ns1,说明碱金属元素一般容易失去最外层的1个电子(价电子),变成正一价的阳离子,从而形成惰性气体的稳定结构(此性质即强还原性);而卤素的最外层电子结构可表示为ns2np5,说明卤素在一般情况下很容易得到1个电子,变成负1价的阴离子,从而形成惰性气体的稳定结构(此性质即强氧化性),当然,它们也可以失去最外层的价电子而呈现出+1、+3、+5、+7等价态。对于同一族元素而言,随着电子层数的增加,金属性越来越强,非金属性越来越弱,这也取决于元素原子的核外电子排布情况。有了这些理论知识作指导(如下式所示),我们可以理解和推测元素的化学性质及其变化规律,从而大大减轻我们的记忆量。
价电子 valence electron
价电子指原子核外电子中能与其他原子相互作用形成化学键的电子。
主族元素的价电子就是主族元素原子的最外层电子;过渡元素的价电子不仅是最外层电子,次外层电子及某些元素的倒数第三层电子也可成为价电子。
===============================================================================
价电子是原子在参与化学反应时能够用于成键的电子,是原子核外跟元素化合价有关的电子。在主族元素中,价电子数就是最外层电子数。副族元素原子的价电子,除最外层电子外,还可包括次外层电子。例如,铬的价电子层结构是3d54s1,6个价电子都可以参加成键。镧系元素还能包括外数第三层的4f电子。价电子全部参与成键,元素表现最高的正化合价;部分参加成键,就有多种化合价的特性。例如,铬元素的最高化合价是+6价,此外有+5、+4、+3、+2、+1价等。在非金属的主族元素中,除了第二周期元素外,一般都有nd空轨道。当这些元素跟电负性更大的元素化合时,原先最外层上的价电子可拆开进入nd轨道中,然后通过轨道杂化使这些元素表现较高的化合价。
举例:1个CO2中含的价电子数为4+6×2=16
Cu Z=29 1s2 2s2 2p6 3s2 3p6 4s2 3d9
热心网友
时间:2022-06-25 03:50
外围电子排布简称价电子层. 价电子层中的电子叫价电子. 外围电子排布指价电子排布,价电子对于主族元素就是最外层电子,对于副族元素点电子还可以是次外层电子甚至倒数第三层电子。
在量子力学里,一个系统可能处于一系列量子态中的一个。这一系列的量子态依能量(能级)高低排列,其中能量最低的量子态称为基态。具有更高能量的状态称为激发态。所以也就是最稳定状态(对这种微粒而言,并不是原子的稳定态)
基态电子排布遵循能量最低原理、保里不相容原理和洪特规则。也就是我们最熟悉的电子排布规则。
Cu外围(价)电子排布式:2d^10 4s^1
Cu基态电子排布式:[Ar]3d10 4s1