六年级上册第2章,第3章,第4章,定义,概念。
发布网友
发布时间:2022-04-29 07:12
我来回答
共1个回答
热心网友
时间:2022-06-21 00:42
第二单元 分数除法概念总结
1.
分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
例如:
表示:已知两个数的积是 与其中一个因数 ,求另一个因数是多少。
2.
分数除以整数(0除外),等于分数乘这个整数的倒数。整数除以分数等于整数乘以这个分数的倒数。
3.
一个数除以分数的计算法则:一个数除以分数,等于这个数乘以分数的倒数。
4.
分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
5.
两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。
6.
比值通常用分数、小数和整数表示。
7.
比的后项不能为0。
8.
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;
9.
根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
10.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
11.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
12.一个数(0除外)除以一个真分数,所得的商大于它本身。
13.一个数(0除外)除以一个假分数,所得的商小于或等于它本身。
14.一个数(0除外)除以一个带分数,所得的商小于它本身。
解分数应用题注意事项:
1.找单位“1”的方法:从含有分数的句子中找,“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
2.找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。 单位“1”×分率=比较量 ; 比较量÷分率=单位“1”
3.注意比较量与分率的对应:
①多的比较量对多的分率; ②少的比较量对少的分率; ③增加的比较量对增加的分率;
④减少的比较量对减少的分率;⑤提高的比较量对提高的分率 ⑥降低的比较量对降低的分率;
⑦工作总量的比较量对工作总量的分率; ⑧工作效率的比较量对工作效率的分率;
⑨部分的比较量对部分的分率; ⑩总量的比较量对总量的分率;
4.单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。
5.单位“1”的特点: ①单位“1”为分母; ②单位“1”为不变量。
第三单元 分数四则混合运算和应用题概念总结
1.分数四则混合运算的顺序与整数四则混合运算的运算顺序相同。在有一级运算和二级运算的计算中,要先算二级运算再算一级运算,即:先乘除后加减。在同级运算中,应按从左到右的顺序依次计算。
2.在分数四则混合运算中,可以应用运算定律使计算简便。
运算定律包括:加法的交换律、加法的结合律、乘法的交换律、乘法的结合律、乘法的分配律。
3.解分数应用题注意事项:与第二单元相同。
第四单元 圆概念总结
1.圆的定义:平面上的一种曲线图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等.
3.半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2r
r = d
9.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母 表示。圆周率是一个无限不循环小数。在计算时,取 3.14。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C= d 或C=2 r
12、圆的面积:圆所占面积的大小叫圆的面积。
13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形的面积=长×宽,所以圆的面积= r×r。
14.圆的面积公式:S= r² 或者S= (d 2)²
或者S= (C 2)²
15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
17.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S= R²- r²
或 S= (R²-r²)。(其中R=r+环的宽度.)
18.环形的周长=外圆周长+内圆周长
19.半圆的周长等于圆的周长的一半加直径。
半圆的周长公式:C= d 2+d 或 C= r+2r
20.半圆面积=圆的面积 2 公式为:S= r² 2
21.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。
例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。
22.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。
例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,
而面积比是4:9。
23.当一个圆的半径增加a厘米时,它的周长就增加2 a厘米;
当一个圆的直径增加a厘米时,它的周长就增加 a厘米。
24.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.
25.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。
26.扇形弧长公式: L=
扇形的面积公式: S= r²
(n为扇形的圆心角度数,r为扇形所在圆的半径)
27.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
28.有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
有2条对称轴的图形是:长方形
有3条对称轴的图形是:等边三角形
有4条对称轴的图形是:正方形;
有无数条对称轴的图形是:圆、圆环。
29.直径所在的直线是圆的对称轴。
第五单元 百分数概念总结
1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。
2.百分数的意义:表示一个数是另一个数的百分之几。
例如:25%的意义:表示一个数是另一个数的25%。
3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。
4.小数与百分数互化的规则:
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
5.百分数与分数互化的规则:
把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
6.百分率公式:
7.纳税:纳税是根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
8.纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全。
9.纳税的种类:将纳税主要分为*、消费税、营业税、个人所得税等几类。
10.应纳税额:缴纳的税款叫应纳税额。
11.税率:应纳税额与各种收入的比率叫做税率。
12.应纳税额的计算:应纳税额=各种收入×税率
13.储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
14.存款的类型:存款分为活期、整存整取、零存整取等方式。
15.本金:存入银行的钱叫做本金。
16.利息:取款时银行多支付的钱叫做利息。
17.国家规定,存款的利息要按20%的税率纳税。国债的利息不纳税。
18.利率:利息与本金的比值叫做利率。
19.银行存款税后利息的计算公式:利息=本金×利率×时间×(1-20%)
20.银行存款利息的税金=利息×20% 或 =本金×利率×时间×20%
21.国债利息的计算公式:利息=本金×利率×时间
22.本息:本金与利息的总和叫做本息。