谁会用特征根方程怎么求数列的通向公式?
发布网友
发布时间:2022-04-29 06:05
我来回答
共2个回答
热心网友
时间:2022-06-20 09:45
先设a(n+1)=an=x
解出x
两边同减x(有时是2选1)
两边倒一下
右边分离常数
构成等差等比
热心网友
时间:2022-06-20 09:45
特征方程
特征根法求解
数列通项公式
一:A(n+1)=pAn+q,
p,q为常数.
(1)通常设:A(n+1)-λ=p(An-λ),
则
λ=q/(1-p).
(2)此处如果用特征根法:
特征方程为:x=px+q,其根为
x=q/(1-p)
注意:若用特征根法,λ
的系数要是-1
例一:A(n+1)=2An+1
,
其中
q=2,p=1,则
λ
=1/(1-2)=
-1那么
A(n+1)+1=2(An+1)
二:再来个
有点意思
的,三项之间的关系:
A(n+2)=pA(n+1)+qAn,
p,q为常数
(1)通常设:
A(n+2)-mA(n+1)=k[pA(n+1)-mAn],
则
m+k=p,
mk=q
(2)此处如果用特征根法:
特征方程是y×y=py+q(※)
注意:
①
m
n为(※)两根。
②
m
n可以交换位置,但其结果或出现两种截然不同的数列形式,但同样都可以计算An,而且还会有意想不到的惊喜,
③
m
n交换位置后可以分别构造出两组An和A(n+1)的
递推公式
,这个时侯你会发现,这是一个关于An和A(n+1)的
二元一次方程组
,那么不就可以消去A(n+1),留下An,得了,An求出来了。
例二:A1=1,A2=1,A(n+2)=
-
5A(n+1)+6An,
特征方程为:y×y=
-
5y+6
那么,m=3,n=2,或者m=2,n=3
于是,A(n+2)-3A(n+1)=2[A(n+1)-3A]
(1)
A(n+2)-2A(n+1)=3[A(n+1)-2A]
(2)
所以,A(n+1)-3A(n)=
-
2
^
n
(3)
A(n+1)-2A(n)=
-
3
^
(n-1)
(4)
you
see
消元消去A(n+1),就是An勒
例三:
【斐波那挈数列通项公式的推导】
斐波那契数列
:0,1,1,2,3,5,8,13,21……
如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(0)
=
0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2)
(n≥3)
显然这是一个线性
递推数列
。
通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2,
X2=(1-√5)/2.
则F(n)=C1*X1^n
+
C2*X2^n
∵F(1)=F(2)=1
∴C1*X1
+
C2*X2
C1*X1^2
+
C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n
-
[(1-√5)/2]^n}【√5表示根号5】
通项公式的推导方法二:普通方法
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1,
-rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可
化简
得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
=
s^(n-1)
+
r*s^(n-2)
+
r^2*F(n-2)
=
s^(n-1)
+
r*s^(n-2)
+
r^2*s^(n-3)
+
r^3*F(n-3)
……
=
s^(n-1)
+
r*s^(n-2)
+
r^2*s^(n-3)
+……+
r^(n-2)*s
+
r^(n-1)*F(1)
=
s^(n-1)
+
r*s^(n-2)
+
r^2*s^(n-3)
+……+
r^(n-2)*s
+
r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的
等比数列
的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n
-
r^n)/(s-r)
r+s=1,
-rs=1的一解为
s=(1+√5)/2,
r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n
-
[(1-√5)/2]^n}
三:最后
准备好了吗
,咱们来看最刺激,最具挑战性的一组:
A(n+1)=(MAn+N)/(CAn+D)M,C不同时为零
此题一般可以避开求通项公式而另辟蹊径的方法,比如
数学归纳法
一类的等等,但是如果一定要挑战一下自己,那我们现在就开始通项公式之路
(1)此处似乎只能用特征根法:
特征方程:x+(Mx+N)/(Cx+D)
①特征方程有两个不等的实根,设为α,β,
则
{(An-α)/(An-β)}为等比数列
注意:α,β可以互换位置
②特征方程有一个实根,α
则
{1/(An-α)}伟
等差数列
③特征方程没有
实数根
,
则
{An}为循环数列,
每年总要有几个题要来个A2007,A2008,A2009,A20xx
例四:这个例题的数字给的十分有意思——伟强
A(n+1)=(3An+4)/(2An+3)
特征方程:x=(3x+4)/(2x+3),x=±√2
则
{(An+√2)/(An-√2)}为等比数列
(A(n+1)+√2)/(A(n+1)-√2)
=[(3An+4)/(2An+3)+√2]/[(3An+4)/(2An+3)-√2]
=[(3+√2)An+(3√2+4)]/[(3-2√2)/(4-3√2)]
=(3+2√2)/(3-2√2)×(An+√2)/(An-√2)
=(√2-1)^4×[(An+√2)/(An-√2)]