谁能帮忙解释一下垂径定理1
发布网友
发布时间:2023-10-10 17:50
我来回答
共1个回答
热心网友
时间:2024-11-04 02:25
垂径定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
垂径定理的实质可以理解为:一条直线,如果它具有两个性质:(1)经过圆心;(2)垂直于弦,那么这条直线就一定具有另外三个性质:(3)平分弦,(4)平分弦所对的劣弧,(5)平分弦所对的优弧(如图所示).
如果将定理的条件与结论一个换一个或两个换两个,就可得到九个逆命题,并能证明它们都是真命题.教科书把较重要的作为推论l,而其余的作为练习题。总之,一条直线,如果它五个性质中的任何两个成立,那么它也一定具有其余三个性质.
推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧,
推论1的实质是:一条直线(如图)
(1)若满足:i)经过圆心,ii)平分弦,则可推出:iii)垂直于弦,iv)平分弦所对的劣弧,v)平分弦所对的优弧.
(2)若满足:i)垂直于弦,ii)平分弦。则可推出:iii)经过圆心,iv)平分弦所对的劣弧,v)平分弦所对的优弧.
(3)若满足;i)经过圆心,ii)平分弦所对的一条弧,则可推出:iii)垂直于弦,iv)平分弦,v)平分弦所对的另一条弧.
推论2 圆的两条平行弦所夹的弧相等.
如图中,若AB‖CD,则AC=BD
注意:在圆中,解有关弦的问题时,常常需要作“垂直于弦的直径作为辅助线。
如果你认可我的回答,请及时点击采纳为【满意回答】按钮
手机提问者在客户端右上角评价点“满意”即可。
你的采纳是我前进的动力! 如还有新的问题,请另外向我求助,答题不易,谢谢支持……