五年级上册寒假作业语文和数学答案。
发布网友
发布时间:2022-04-20 00:18
我来回答
共1个回答
热心网友
时间:2023-08-30 01:31
学习的动力是培养兴趣,不是抄答案。平时阅读一些科普书籍,可以提高自己的学习兴趣。
比如说:你可以阅读一下《代数几何学》
在20世纪数学史上,代数几何学(Algebraic Geometry)始终处于一个核心的地位,这从数学界的主要大奖之一,Feilds奖的获得者情况即可看出,从1936年颁发首届Fields奖算起,到2002年在中国举行的国际数学家大会上颁发的第24届Fields奖为止,总共有45位40岁以下的青年数学家获奖,其中大约有1/3的人,其获奖的工作或多或少与代数几何有一定的联系,这说明代数几何的研究是相当活跃的,一直是Dieudonne意义上的主流数学。为什么代数几何的研究会常盛不衰?因为在代数几何了有大量未解决的问题,而且这些难题涉及其他许多学科,正是这些难题和其他学科的刺激,使得代数几何充满了活力,充满了令人神往的创造的生长点。
代数几何到底研究什么呢?简单的说,就是研究n维仿射空间或n维射影空间中多项式方程组的零点及其上的三大结构:代数结构,拓扑结构和序结构。此三大结构系Bourbaki学派提出,用来统摄结构数学,数学中凡是具有结构特征的板块,均由这三大母结构及其混合构成。对于1元n次方程的解,我们有很好的结果,即代数学基本定理:在复数域C内,任意1元n次方程一定有n个零点(重复了几次算几重)。但是,若把情况改变一下,由1元变成 n元,复数域变成任意基域K,现要讨论由m个n元方程构成的方程组在K内的公共零点的情况,容易发现,情况要比1元时复杂得多,此时,用窗同的方法已无济于事,必须创造新的方法,融入新的思想。正是这样的内在的发展要求,使得代数几何在20世纪发生了一场*,即库恩意义上的范式的彻底改变。其中蕴涵的新的数学思想,不仅革新了代数几何本身,而且也革新了整个数学界的思考方式,给经典的数学家们在思想上带来了深深的震撼!
Dieudonne把代数几何学的历史分为七个时期:前史(prehistory,Ca.400BC-1630A.D),探索阶段(Exploration,1630-1795),射影几何的黄金时代(1795-1850),Riemann和双有理几何的时代(1850- 1866),发展和混乱时期(1866-1920),涌现新结构和新思想的时期(1920-1950),最后的一个阶段,也就是代数几何史上最辉煌的时期,层(sheaf)和概形(Scheme)的时代(1950-)。代数几何学的对象原来是欧氏平面中的代数曲线,即由多项式P(x,y)=0定义的轨迹,比如最简单的代数曲线——直线和圆,古希腊时代就已经在研究圆锥曲线和一些简单的三次,四次代数曲线了。承前述可以看出,研究代数方程组的公共零点集离不开坐标表示,所以,真正意义上的研究还得从Descartes和Fermat创立几何图形的坐标表示开始说起,但这已经是17世纪的事情了。解析几何学对于代数曲线和曲面已经有相当完整的结果了,从Newton开始已着手对三次代数曲线进行分类,得出72类,从这时起,分类问题便成为代数几何中的知道性问题了,这些问题成为大量研究工作的推动力。但是,反过来,正是由于对三次的或四次的代数曲线进行的分类过于繁复,从而推动了解析几何学向代数几何学的过度,也就是在更加粗糙的水平上进行分类和进行一般的理论研究。18世纪,AG(代表代数几何,以下类同)的基本问题是代数曲线和曲面的相交问题,相当于代数方程组中的消元问题,这个时期得到的基本成果是Bezout定理:设X,Y是P^2中两支不同的曲线,次数分别为d和e,令X#Y={P_1, P_2,......P_s},则Sigama[j is from 1 to s] i(X,Y;P_j)=de。随着19世纪射影几何学的兴起,开始用射影几何方法来研究代数曲线,其中引进了无穷远点及虚点和用齐次多项式及射影坐标P (X_0,X_1,X_2)=0来表示代数曲线,并且允许出现复坐标,1834年,德国数学家普吕克尔得出关于平面曲线的普吕克尔公式,这个公式把平面代数曲线的代数特征和几何特征联系起来了,如次数和拐点数等,特别是由此证明了一般三次代数曲线皆有9个拐点,1839年,他还发现四次曲线有28条二重切线,其中至多8条是实的。上面就是前三个阶段代数几何学的一个概貌。