发布网友 发布时间:2022-04-27 13:28
共1个回答
热心网友 时间:2023-09-24 18:11
离散数学被分成三门课程进行教学,即集合论与图论、代数结构与组合数学、数理逻辑。教学方式以课堂讲授为主, 课后有书面作业、通过学校网络教学平台发布课件并进行师生交流。
集合论部分:集合及其运算、二元关系与函数、自然数及自然数集、集合的基数。图论部分:图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、平面图、图着色、支配集、覆盖集、独立集与匹配、带权图及其应用。
代数结构部分:代数系统的基本概念、半群与独异点、群、环与域、格与布尔代数。组合数学部分:组合存在性定理、基本的计数公式、组合计数方法、组合计数定理。数理逻辑部分:命题逻辑、一阶谓词演算、消解原理。
离散数学的应用:
离散数学也可以说是计算机科学的基础核心学科,在离散数学中的有一个著名的典型例子-四色定理又称四色猜想,这是世界近代三大数学难题之一,它是在1852年,由英国的一名绘图员弗南西斯·格思里提出的,他在进行地图着色时,发现了一个现象,“每幅地图都可以仅用四种颜色着色,并且共同边界的国家都可以被着上不同的颜色”。
那么这能否从数学上进行证明呢?100多年后的1976年,肯尼斯·阿佩尔(Kenneth Appel)和沃尔夫冈·哈肯(Wolfgang Haken)使用计算机辅助计算,用了1200个小时和100亿次的判断,终于证明了四色定理,轰动世界,这就是离散数学与计算机科学相互协作的结果。
以上内容从参考:百度百科-离散数学