发布网友 发布时间:2023-10-28 23:06
共1个回答
热心网友 时间:2024-12-01 08:42
12和18的最小公倍数介绍如下:
12和18的最小公倍数是36。
12=2×2×3
18=2×3×3
12与18共有的质因数是1个2和1个3,而12和18独有的质因数分别是2和3。即,
最小公倍数等于2×3×3×2=36
分解质因数法:首先把两个数的质因数写出来,最小公倍数等于这两个数全部共有的质因数的代表与各自独有的质因数的乘积。
扩展资料
最小公倍数的适用范围:分数的加减法,中国剩余定理(正确的题在最小公倍数内有解,有唯一的解)。因为,素数是不能被1和自身数以外的其它数整除的数。
素数X的N次方,是只能被X的N及以下次方,1和自身数整除。所以,给最小公倍数下一个定义:S个数的最小公倍数,为这S个数中所含素因子的最高次方之间的乘积。
求几个自然数的最小公倍数,有两种方法:
(1)分解质因数法:先把这几个数分解质因数,再把它们一切公有的质因数和其中几个数公有的质因数以及每个数的独有的质因数全部连乘起来,所得的积就是它们的最小公倍数。
例如,求[12,18,20],因为12=2^2×3,18=2×3^2,20=2^2×5,其中三个数的公有的质因数为2,两个数的公有质因数为2与3,每个数独有的质因数为5与3,所以,[12,18,20]=2^2×3^2×5=180.(可用短除法计算)。
(2)公式法:由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积.即(a,b)×[a,b]=a×b.所以,求两个数的最小公倍数,就可以先求出它们的最大公约数,然后用上述公式求出它们的最小公倍数。
例如,求[18,20],即得[18,20]=18×20÷(18,20)=18×20÷2=180.求几个自然数的最小公倍数,可以先求出其中两个数的最小公倍数,再求这个最小公倍数与第三个数的最小公倍数,依次求下去,直到最后一个为止.最后所得的那个最小公倍数,就是所求的几个数的最小公倍数。