证明对称阵A为正定的充分必要条件是:存在可逆矩阵U,使A=UTU,即A与单位阵E合同
发布网友
发布时间:2022-04-28 20:48
我来回答
共4个回答
热心网友
时间:2023-10-07 10:02
A正定,则存在正交阵Q和对角元全是正数的对角阵D,使得A=Q^TDQ,记C是对角元是D的对角元的平方根的对角阵,即D=C^2=C^TC,于是A=Q^TC^TCQ,U=CQ是可逆阵。反之,A=U^TU,则任意的非零向量x,有Ux非零,于是x^TAx=x^TU^TUx=(Ux)^T(Ux)=||Ux||^2>0,满足正定定义。
热心网友
时间:2023-10-07 10:03
醉了,我在外省上学搜这个题,居然能搜到辛集 ,还有几天放假就回辛集!!
热心网友
时间:2023-10-07 10:03
辛集没大学 所以没人会解
热心网友
时间:2023-10-07 10:04
对比两个图像,相当于旋转了45°
通过变量的线性变换化简一个二次齐次多项式,使它只含有平方项,就是把方程化为标准形。
这样做的意义是便于研究二次曲线,如标准形 m x 2 + n y 2 = 1 mx^2+ny^2=1 mx
2
+ny
2
=1中m和n的正负代表不同类型的双曲线。
二次型
含有n个变量x1,x2,…,xn的二次齐次函数
f ( x 1 , x 2 , ⋯ , x n ) = a 11 x 1 2 + a 22 x 2 2 + ⋯ + a n n x n 2 + 2 a 12 x 1 x 2 + 2 a 13 x 1 x 3 + ⋯ + 2 a n − 1 , n x n − 1 x n f(x_1,x_2,\cdots,x_n)=a_{11}x_1^2+a_{22}x_2^2+\cdots+a_{nn}x_n^2\\+2a_{12}x_1x_2+2a_{13}x_1x_3+\cdots+2a_{n-1,n}x_{n-1}x_n
f(x
1
,x
2
,⋯,x
n
)=a
11
x
1
2
+a
22
x
2
2
+⋯+a
nn
x
n
2
+2a
12
x
1
x
2
+2a
13
x
1
x
3
+⋯+2a
n−1,n
x
n−1
x
n
称为二次型。
对于二次型,主要问题是寻求可逆的线性变换
{ x 1 = c 11 y 1 + c 12 y 2 + ⋯ + c 1 n y n , x 2 = c 21 y 1 + c 22 y 2 + ⋯ + c 2 n y n , ⋯ x n = c n 1 y 1 + c n 2 y 2 + ⋯ + c n n y n , \left\{
x1=c11y1+c12y2+⋯+c1nyn,x2=c21y1+c22y2+⋯+c2nyn,⋯xn=cn1y1+cn2y2+⋯+cnnyn,
\right.
⎩
⎪
⎪
⎨
⎪
⎪
⎧
x
1
=c
11
y
1
+c
12
y
2
+⋯+c
1n
y
n
,
x
2
=c
21
y
1
+c
22
y
2
+⋯+c
2n
y
n
,
⋯
x
n
=c
n1
y
1
+c
n2
y
2
+⋯+c
nn
y
n
,
使二次型只含有平方项,也就是
f = k 1 y 1 2 + k 2 y 2 2 + ⋯ + k n y n 2 , f=k_1y_1^2+k_2y_2^2+\cdots+k_ny_n^2,
f=k
1
y
1
2
+k
2
y
2
2
+⋯+k
n
y
n
2
,
这种只含有平方项的二次型,称为二次型的标准型(或法式)。
如果标准形的系数只在1,-1,0三个数中取值,也就是
f = y 1 2 + ⋯ + y p 2 − y p + 1 2 − ⋯ − y r 2 , f=y_1^2+\cdots+y_p^2-y_{p+1}^2-\cdots-y_r^2,
f=y
1
2
+⋯+y
p
2
−y
p+1
2
−⋯−y
r
2
,
则称上式为二次型的规范形。
取 a i j = a j i a_{ij}=a_{ji} a
ij
=a
ji
,则 2 a i j x i x j = a i j x i x j + a j i x j x i 2a_{ij}x_ix_j=a_{ij}x_ix_j+a_{ji}x_jx_i 2a
ij
x
i
x
j
=a
ij
x
i
x
j
+a
ji
x
j
x
i
,于是
f = a 11 x 1 2 + a 12 x 1 x 2 + ⋯ + a 1 n x 1 x n + a 21 x 2 x 1 + a 22 x 2 2 + ⋯ + a 2 n x 2 x n + ⋯ + a n 1 x n x 1 + a n 2 x n x 2 + ⋯ + a n n x n 2 = ∑ i , j = 1 n a i j x i x j = ( x 1 , x 2 , ⋯ , x n ) [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ] [ x 1 x 2 ⋮ x n ] = x T A x f=a_{11}x_1^2+a_{12}x_1x_2+\dots+a_{1n}x_1x_n\\+a_{21}x_2x_1+a_{22}x_2^2+\dots+a_{2n}x_2x_n\\+\cdots+a_{n1}x_nx_1+a_{n2}x_nx_2+\dots+a_{nn}x_n^2\\=\sum_{i,j=1}^na_{ij}x_ix_j\\=\left ( x_1,x_2,\cdots,x_n \right )
⎡⎣⎢⎢⎢⎢a11a21⋮an1a12a22⋮an2⋯⋯⋯a1na2n⋮ann⎤⎦⎥⎥⎥⎥
⎡⎣⎢⎢⎢⎢x1x2⋮xn⎤⎦⎥⎥⎥⎥
\\=x^TAx
f=a
11
x
1
2
+a
12
x
1
x
2
+⋯+a
1n
x
1
x
n
+a
21
x
2
x
1
+a
22
x
2
2
+⋯+a
2n
x
2
x
n
+⋯+a
n1
x
n
x
1
+a
n2
x
n
x
2
+⋯+a
nn
x
n
2
=
i,j=1
∑
n
a
ij
x
i
x
j
=(x
1
,x
2
,⋯,x
n
)
⎣
⎢
⎢
⎢
⎡
a
11
a
21
⋮
a
n1
a
12
a
22
⋮
a
n2
⋯
⋯
⋯
a
1n
a
2n
⋮
a
nn
⎦
⎥
⎥
⎥
⎤
⎣
⎢
⎢
⎢
⎡
x
1
x
2
⋮
x
n
⎦
⎥
⎥
⎥
⎤
=x
T
Ax
其中A为对称阵。
【例】 f = x 2 − 3 z 2 − 4 x y + y z f=x^2-3z^2-4xy+yz f=x
2
−3z
2
−4xy+yz用矩阵记号写出来,就是
f = ( x , y , z ) [ 1 − 2 0 − 2 0 1 2 0 1 2 − 3 ] [ x y z ] f=(x,y,z)
⎡⎣⎢⎢1−20−2012012−3⎤⎦⎥⎥
⎡⎣⎢xyz⎤⎦⎥
f=(x,y,z)
⎣
⎡
1
−2
0
−2
0
2
1
0
2
1
−3
⎦
⎤
⎣
⎡
x
y
z
⎦
⎤
二次型化标准形和规范形
如果A是对角阵,f就是标准形。
定理:任给二次型 f = ∑ i , j = 1 n a i j x i x j ( a i j = a j i ) f=\sum_{i,j=1}^na_{ij}x_ix_j(a_{ij}=a_{ji}) f=∑
i,j=1
n
a
ij
x
i
x
j
(a
ij
=a
ji
),总有正交变换x=Py,使f化为标准形 f = λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ n y n 2 f=\lambda_1y_1^2+\lambda_2y_2^2+\cdots+\lambda_ny_n^2 f=λ
1
y
1
2
+λ
2
y
2
2
+⋯+λ
n
y
n
2
,其中 λ 1 , λ 2 , ⋯ , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ
1
,λ
2
,⋯,λ
n
是f的矩阵A的特征值。
证明:任给对称阵A,总有正交阵P,使P-1AP = PTAP = Λ,其中Λ是以A的n个特征值为对角元的对角阵,于是有
A = ( P T ) − 1 Λ P − 1 = ( P − 1 ) T Λ P − 1 = 令 Q = P − 1 Q T Λ Q , A=(P^T)^{-1}ΛP^{-1}=(P^{-1})^TΛP^{-1}\xlongequal{令Q=P^{-1}}Q^TΛQ,
A=(P
T
)
−1
ΛP
−1
=(P
−1
)
T
ΛP
−1
令Q=P
−1
Q
T
ΛQ,
f = x T A x = x T Q T Λ Q x = ( Q x ) T Λ Q x = 令 y = Q x y T Λ y f=x^TAx=x^TQ^TΛQx=(Qx)^TΛQx\xlongequal{令y=Qx}y^TΛy
f=x
T
Ax=x
T
Q
T
ΛQx=(Qx)
T
ΛQx
令y=Qx
y
T
Λy
要把标准形 f = λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ n y n 2 f=\lambda_1y_1^2+\lambda_2y_2^2+\cdots+\lambda_ny_n^2 f=λ
1
y
1
2
+λ
2
y
2
2
+⋯+λ
n
y
n
2
化成规范形,只需令
{ z 1 = ∣ λ 1 ∣ y 1 z 2 = ∣ λ 2 ∣ y 2 ⋯ z n = ∣ λ n ∣ y n \left\{
z1=|λ1|−−−√y1z2=|λ2|−−−√y2⋯zn=|λn|−−−√yn
\right.
⎩
⎪
⎪
⎨
⎪
⎪
⎧
z
1
=
∣λ
1
∣
y
1
z
2
=
∣λ
2
∣
y
2
⋯
z
n
=
∣λ
n
∣
y
n
即得f的规范形
f = ± z 1 2 ± z 2 2 ± ⋯ ± z n 2 ( 正 负 与 λ i 相 同 ) . f=\pm z_1^2\pm z_2^2\pm \cdots\pm z_n^2(正负与λ_i相同).
f=±z
1
2
±z
2
2
±⋯±z
n
2
(正负与λ
i
相同).
正定二次型
惯性定理:设有二次型 f = x T A x f=x^TAx f=x
T
Ax,它的秩为r,有两个可逆变换x=Cy和x=Pz使
f = k 1 y 1 2 + k 2 y 2 2 + ⋯ + k r y r 2 ( k i ≠ 0 ) f=k_1y_1^2+k_2y_2^2+\cdots+k_ry_r^2(k_i\neq 0)
f=k
1
y
1
2
+k
2
y
2
2
+⋯+k
r
y
r
2
(k
i
=0)
及
f = λ 1 z 1 2 + λ 2 z 2 2 + ⋯ + λ r z r 2 ( λ i ≠ 0 ) , f=\lambda_1z_1^2+\lambda_2z_2^2+\cdots+\lambda_rz_r^2(\lambda_i\neq 0),
f=λ
1
z
1
2
+λ
2
z
2
2
+⋯+λ
r
z
r
2
(λ
i
=0),
则k1,…,kr中正数的个数与λ1,…,λr中正数的个数相等。
二次型的标准形中正系数的个数称为二次型的正惯性指数,负系数的个数称为负惯性指数。
设有二次型 f = x T A x f=x^TAx f=x
T
Ax,如果对任何x ≠ 0,都有f > 0,则称f为正定二次型,并称对称阵A是正定的;如果对任何x ≠ 0,都有f < 0,则称f为负定二次型,并称对称阵A是负定的。f⩾0,半正定;f⩽0,半负定。
定理:n元二次型 f = x T A x f=x^TAx f=x
T
Ax为正定的充分必要条件是:它的标准形的n个系数全为正,即它的规范形的n个系数全为1,亦即它的正惯性指数等于n。
推论:对称阵A为正定的充分必要条件是:A的特征值全为正,即|A|≠0,亦即A可逆。
打开CSDN,阅读体验更佳
如何理解二次型?
通过矩阵来研究二次函数(方程),这就是线性代数中二次型的重点。 1 二次函数(方程)的特点 1.1 二次函数 最简单的一元二次函数就是: 给它增加一次项不会改变形状: 增加常数项就更不用说了,更不会改变形状。 1.2 二次方程 下面是一个二元二次方程: 给它增加一次项也不会改变形状,只是看上去有些伸缩: 1.3 小结 对于二次函数或者二次方程,二次部分是主要部分...
浏览器打开
线性代数学习笔记——第八十一讲——正定二次型的性质(2)
1. 正定矩阵的乘积是正定矩阵的充要条件是左乘积等于右乘积 2. 顺序主子式的定义 3. 二次型正定的充要条件是其矩阵的顺序主子式全大于零 4. 二次型判定示例1 5. 二次型判定示例2 6.二次型判定示例3 7. 关于正定矩阵的等价命题 ...
正定二次型与半正定二次型
对于实二次型其中A是实对称的,下列条件等价: 正定的 (1)是正定的. (2)它的正惯性指数p等于n. (3)有可逆实矩阵C,使得其中 (4)实对称矩阵A是正定的,有实可逆矩阵C,使得A=C'EC=C'C. (5)A的顺序主子式全大于零. 半正定的 (1)是半正定的. (2)它的正惯性指数p与秩r相等. (3)有可逆实矩阵C,使得其中 (4)有实矩阵C使得A=C'C. (5..
二次型,正定二次型
二次型:含有n个变量x1,x2,...xnx_1,x_2,...x_nx1,x2,...xn的二次齐次函数: f(x1,x2,...xn)=a11x12+a12x1x2+a13x1x3+a14x1x4...+a1nx1xnf(x_1,x_2,...x_n)=a_{11}x_1^2+a_{12}x_1x_2+a_{13}x_1x_3+a_{14}x_1x_4...+a_{1n}x_1x_nf(...
线性代数笔记12:二次型与函数极值
这一节我们将看见,如何将数值函数用矩阵表示,并使用正定矩阵来指示函数的极值。 二次型 定义:对nnn维实向量xxx及nnn阶实对称矩阵AAA,称以下数值函数为一个实二次型(quadratic form),为一个二次齐次多项式。 f(x)=xTAx=∑i=1n∑j=1naijxixjf(x)=xTAx=∑i=1n∑j=1naijxixjf(x) = x^TAx = \sum\limi..
正定二次型
定义:对于任意非零向量x=[x1,x2...xn]T,恒有 f(x1,x2...xn)= 则称二次型f为正定二次型 f正定 A的正惯性指数p=r=n,r为矩阵的秩,n为未知数个数 A的每一个特征值都大于0 ,D为可逆矩阵 A的全部顺序主子式大于0,即 ..
正定二次型与正定矩阵
文章目录二次型正定的定义半正定/(负)半负定/不定的定义二次型正定充要条件矩阵正定+正定矩阵的定义实对称矩阵正定的充要推论1推论2正定充要条件②半正定充要条件①半正定充要条件②负定充要条件Hesse矩阵延伸:n元函数的Hesse矩阵 二次型正定的定义 n元实二次型X′AXX'AXX′AX若满足:对RnR^nRn中任意非零列向量α\alphaα都有α′Aα>0\alp...
二次型
定义 含有nnn个变量x1,x2,⋯,xnx1,x2,⋯,xnx_1,x_2,\cdots,x_n的二次齐次函数 f(x1,x2,⋯,xn)=a11x21+a22x22+⋯+annx2n+2a12x1x2+2a13x1x3+⋯+2an−1,nxn−1xn(1)(1)f(x1,x2,⋯,xn)=a11x12+a22x22+⋯+annxn2+2a12x1x2+2a13x1x3+⋯+2an−1,nx...
多元函数极值 二次型 Hessian矩阵 正定矩形 二阶泰勒展开
二次型多元函数极值Hessian矩阵正定矩阵如何判断一个矩阵是否是正定的,负定的,还是不定的呢?一个最常用的方法就是顺序主子式。实对称矩阵为正定矩阵的充要条件是的各顺序主子式都大于零。当然这个判定方法的计算量比较大。对于实二次型矩阵还有一个判定方法:实二次型矩阵为正定二次型的充要条件是的矩阵的特征值全大于零。为负定二次型的充要条件是的矩阵的特征值全小于零,否则是不定的。多元函数极值的判定泰勒展开式.