问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

证明对称阵A为正定的充分必要条件是:存在可逆矩阵U,使A=UTU,即A与单位阵E合同

发布网友 发布时间:2022-04-28 20:48

我来回答

4个回答

热心网友 时间:2023-10-07 10:02

A正定,则存在正交阵Q和对角元全是正数的对角阵D,使得A=Q^TDQ,记C是对角元是D的对角元的平方根的对角阵,即D=C^2=C^TC,于是A=Q^TC^TCQ,U=CQ是可逆阵。反之,A=U^TU,则任意的非零向量x,有Ux非零,于是x^TAx=x^TU^TUx=(Ux)^T(Ux)=||Ux||^2>0,满足正定定义。

热心网友 时间:2023-10-07 10:03

醉了,我在外省上学搜这个题,居然能搜到辛集 ,还有几天放假就回辛集!!

热心网友 时间:2023-10-07 10:03

辛集没大学 所以没人会解

热心网友 时间:2023-10-07 10:04

对比两个图像,相当于旋转了45°
通过变量的线性变换化简一个二次齐次多项式,使它只含有平方项,就是把方程化为标准形。
这样做的意义是便于研究二次曲线,如标准形 m x 2 + n y 2 = 1 mx^2+ny^2=1 mx
2
+ny
2
=1中m和n的正负代表不同类型的双曲线。
二次型
含有n个变量x1,x2,…,xn的二次齐次函数
f ( x 1 , x 2 , ⋯   , x n ) = a 11 x 1 2 + a 22 x 2 2 + ⋯ + a n n x n 2 + 2 a 12 x 1 x 2 + 2 a 13 x 1 x 3 + ⋯ + 2 a n − 1 , n x n − 1 x n f(x_1,x_2,\cdots,x_n)=a_{11}x_1^2+a_{22}x_2^2+\cdots+a_{nn}x_n^2\\+2a_{12}x_1x_2+2a_{13}x_1x_3+\cdots+2a_{n-1,n}x_{n-1}x_n
f(x
1

,x
2

,⋯,x
n

)=a
11

x
1
2

+a
22

x
2
2

+⋯+a
nn

x
n
2


+2a
12

x
1

x
2

+2a
13

x
1

x
3

+⋯+2a
n−1,n

x
n−1

x
n


称为二次型。
对于二次型,主要问题是寻求可逆的线性变换
{ x 1 = c 11 y 1 + c 12 y 2 + ⋯ + c 1 n y n , x 2 = c 21 y 1 + c 22 y 2 + ⋯ + c 2 n y n , ⋯ x n = c n 1 y 1 + c n 2 y 2 + ⋯ + c n n y n , \left\{
x1=c11y1+c12y2+⋯+c1nyn,x2=c21y1+c22y2+⋯+c2nyn,⋯xn=cn1y1+cn2y2+⋯+cnnyn,
\right.









x
1

=c
11

y
1

+c
12

y
2

+⋯+c
1n

y
n

,
x
2

=c
21

y
1

+c
22

y
2

+⋯+c
2n

y
n

,

x
n

=c
n1

y
1

+c
n2

y
2

+⋯+c
nn

y
n

,


使二次型只含有平方项,也就是
f = k 1 y 1 2 + k 2 y 2 2 + ⋯ + k n y n 2 , f=k_1y_1^2+k_2y_2^2+\cdots+k_ny_n^2,
f=k
1

y
1
2

+k
2

y
2
2

+⋯+k
n

y
n
2

,
这种只含有平方项的二次型,称为二次型的标准型(或法式)。
如果标准形的系数只在1,-1,0三个数中取值,也就是
f = y 1 2 + ⋯ + y p 2 − y p + 1 2 − ⋯ − y r 2 , f=y_1^2+\cdots+y_p^2-y_{p+1}^2-\cdots-y_r^2,
f=y
1
2

+⋯+y
p
2

−y
p+1
2

−⋯−y
r
2

,
则称上式为二次型的规范形。
取 a i j = a j i a_{ij}=a_{ji} a
ij

=a
ji

,则 2 a i j x i x j = a i j x i x j + a j i x j x i 2a_{ij}x_ix_j=a_{ij}x_ix_j+a_{ji}x_jx_i 2a
ij

x
i

x
j

=a
ij

x
i

x
j

+a
ji

x
j

x
i

,于是
f = a 11 x 1 2 + a 12 x 1 x 2 + ⋯ + a 1 n x 1 x n + a 21 x 2 x 1 + a 22 x 2 2 + ⋯ + a 2 n x 2 x n + ⋯ + a n 1 x n x 1 + a n 2 x n x 2 + ⋯ + a n n x n 2 = ∑ i , j = 1 n a i j x i x j = ( x 1 , x 2 , ⋯   , x n ) [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ] [ x 1 x 2 ⋮ x n ] = x T A x f=a_{11}x_1^2+a_{12}x_1x_2+\dots+a_{1n}x_1x_n\\+a_{21}x_2x_1+a_{22}x_2^2+\dots+a_{2n}x_2x_n\\+\cdots+a_{n1}x_nx_1+a_{n2}x_nx_2+\dots+a_{nn}x_n^2\\=\sum_{i,j=1}^na_{ij}x_ix_j\\=\left ( x_1,x_2,\cdots,x_n \right )
⎡⎣⎢⎢⎢⎢a11a21⋮an1a12a22⋮an2⋯⋯⋯a1na2n⋮ann⎤⎦⎥⎥⎥⎥
⎡⎣⎢⎢⎢⎢x1x2⋮xn⎤⎦⎥⎥⎥⎥
\\=x^TAx
f=a
11

x
1
2

+a
12

x
1

x
2

+⋯+a
1n

x
1

x
n


+a
21

x
2

x
1

+a
22

x
2
2

+⋯+a
2n

x
2

x
n


+⋯+a
n1

x
n

x
1

+a
n2

x
n

x
2

+⋯+a
nn

x
n
2


=
i,j=1

n

a
ij

x
i

x
j


=(x
1

,x
2

,⋯,x
n

)







a
11


a
21



a
n1




a
12


a
22



a
n2









a
1n


a
2n



a
nn


















x
1


x
2



x
n











=x
T
Ax
其中A为对称阵。
【例】 f = x 2 − 3 z 2 − 4 x y + y z f=x^2-3z^2-4xy+yz f=x
2
−3z
2
−4xy+yz用矩阵记号写出来,就是
f = ( x , y , z ) [ 1 − 2 0 − 2 0 1 2 0 1 2 − 3 ] [ x y z ] f=(x,y,z)
⎡⎣⎢⎢1−20−2012012−3⎤⎦⎥⎥
⎡⎣⎢xyz⎤⎦⎥
f=(x,y,z)




1
−2
0


−2
0
2
1




0
2
1


−3










x
y
z






二次型化标准形和规范形
如果A是对角阵,f就是标准形。
定理:任给二次型 f = ∑ i , j = 1 n a i j x i x j ( a i j = a j i ) f=\sum_{i,j=1}^na_{ij}x_ix_j(a_{ij}=a_{ji}) f=∑
i,j=1
n

a
ij

x
i

x
j

(a
ij

=a
ji

),总有正交变换x=Py,使f化为标准形 f = λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ n y n 2 f=\lambda_1y_1^2+\lambda_2y_2^2+\cdots+\lambda_ny_n^2 f=λ
1

y
1
2


2

y
2
2

+⋯+λ
n

y
n
2

,其中 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ
1


2

,⋯,λ
n

是f的矩阵A的特征值。
证明:任给对称阵A,总有正交阵P,使P-1AP = PTAP = Λ,其中Λ是以A的n个特征值为对角元的对角阵,于是有
A = ( P T ) − 1 Λ P − 1 = ( P − 1 ) T Λ P − 1 = 令 Q = P − 1 Q T Λ Q , A=(P^T)^{-1}ΛP^{-1}=(P^{-1})^TΛP^{-1}\xlongequal{令Q=P^{-1}}Q^TΛQ,
A=(P
T
)
−1
ΛP
−1
=(P
−1
)
T
ΛP
−1

令Q=P
−1

Q
T
ΛQ,
f = x T A x = x T Q T Λ Q x = ( Q x ) T Λ Q x = 令 y = Q x y T Λ y f=x^TAx=x^TQ^TΛQx=(Qx)^TΛQx\xlongequal{令y=Qx}y^TΛy
f=x
T
Ax=x
T
Q
T
ΛQx=(Qx)
T
ΛQx
令y=Qx
y
T
Λy
要把标准形 f = λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ n y n 2 f=\lambda_1y_1^2+\lambda_2y_2^2+\cdots+\lambda_ny_n^2 f=λ
1

y
1
2


2

y
2
2

+⋯+λ
n

y
n
2

化成规范形,只需令
{ z 1 = ∣ λ 1 ∣ y 1 z 2 = ∣ λ 2 ∣ y 2 ⋯ z n = ∣ λ n ∣ y n \left\{
z1=|λ1|−−−√y1z2=|λ2|−−−√y2⋯zn=|λn|−−−√yn
\right.









z
1

=
∣λ
1



y
1


z
2

=
∣λ
2



y
2



z
n

=
∣λ
n



y
n




即得f的规范形
f = ± z 1 2 ± z 2 2 ± ⋯ ± z n 2 ( 正 负 与 λ i 相 同 ) . f=\pm z_1^2\pm z_2^2\pm \cdots\pm z_n^2(正负与λ_i相同).
f=±z
1
2

±z
2
2

±⋯±z
n
2

(正负与λ
i

相同).
正定二次型
惯性定理:设有二次型 f = x T A x f=x^TAx f=x
T
Ax,它的秩为r,有两个可逆变换x=Cy和x=Pz使
f = k 1 y 1 2 + k 2 y 2 2 + ⋯ + k r y r 2 ( k i ≠ 0 ) f=k_1y_1^2+k_2y_2^2+\cdots+k_ry_r^2(k_i\neq 0)
f=k
1

y
1
2

+k
2

y
2
2

+⋯+k
r

y
r
2

(k
i




=0)

f = λ 1 z 1 2 + λ 2 z 2 2 + ⋯ + λ r z r 2 ( λ i ≠ 0 ) , f=\lambda_1z_1^2+\lambda_2z_2^2+\cdots+\lambda_rz_r^2(\lambda_i\neq 0),
f=λ
1

z
1
2


2

z
2
2

+⋯+λ
r

z
r
2


i




=0),
则k1,…,kr中正数的个数与λ1,…,λr中正数的个数相等。
二次型的标准形中正系数的个数称为二次型的正惯性指数,负系数的个数称为负惯性指数。
设有二次型 f = x T A x f=x^TAx f=x
T
Ax,如果对任何x ≠ 0,都有f > 0,则称f为正定二次型,并称对称阵A是正定的;如果对任何x ≠ 0,都有f < 0,则称f为负定二次型,并称对称阵A是负定的。f⩾0,半正定;f⩽0,半负定。
定理:n元二次型 f = x T A x f=x^TAx f=x
T
Ax为正定的充分必要条件是:它的标准形的n个系数全为正,即它的规范形的n个系数全为1,亦即它的正惯性指数等于n。
推论:对称阵A为正定的充分必要条件是:A的特征值全为正,即|A|≠0,亦即A可逆。
打开CSDN,阅读体验更佳

如何理解二次型?

通过矩阵来研究二次函数(方程),这就是线性代数中二次型的重点。 1 二次函数(方程)的特点 1.1 二次函数 最简单的一元二次函数就是: 给它增加一次项不会改变形状: 增加常数项就更不用说了,更不会改变形状。 1.2 二次方程 下面是一个二元二次方程: 给它增加一次项也不会改变形状,只是看上去有些伸缩: 1.3 小结 对于二次函数或者二次方程,二次部分是主要部分...
浏览器打开
线性代数学习笔记——第八十一讲——正定二次型的性质(2)
1. 正定矩阵的乘积是正定矩阵的充要条件是左乘积等于右乘积 2. 顺序主子式的定义 3. 二次型正定的充要条件是其矩阵的顺序主子式全大于零 4. 二次型判定示例1 5. 二次型判定示例2 6.二次型判定示例3 7. 关于正定矩阵的等价命题 ...

正定二次型与半正定二次型
对于实二次型其中A是实对称的,下列条件等价: 正定的 (1)是正定的. (2)它的正惯性指数p等于n. (3)有可逆实矩阵C,使得其中 (4)实对称矩阵A是正定的,有实可逆矩阵C,使得A=C'EC=C'C. (5)A的顺序主子式全大于零. 半正定的 (1)是半正定的. (2)它的正惯性指数p与秩r相等. (3)有可逆实矩阵C,使得其中 (4)有实矩阵C使得A=C'C. (5..
二次型,正定二次型
二次型:含有n个变量x1,x2,...xnx_1,x_2,...x_nx1​,x2​,...xn​的二次齐次函数: f(x1,x2,...xn)=a11x12+a12x1x2+a13x1x3+a14x1x4...+a1nx1xnf(x_1,x_2,...x_n)=a_{11}x_1^2+a_{12}x_1x_2+a_{13}x_1x_3+a_{14}x_1x_4...+a_{1n}x_1x_nf(...
线性代数笔记12:二次型与函数极值
这一节我们将看见,如何将数值函数用矩阵表示,并使用正定矩阵来指示函数的极值。 二次型 定义:对nnn维实向量xxx及nnn阶实对称矩阵AAA,称以下数值函数为一个实二次型(quadratic form),为一个二次齐次多项式。 f(x)=xTAx=∑i=1n∑j=1naijxixjf(x)=xTAx=∑i=1n∑j=1naijxixjf(x) = x^TAx = \sum\limi..
正定二次型
定义:对于任意非零向量x=[x1,x2...xn]T,恒有 f(x1,x2...xn)= 则称二次型f为正定二次型 f正定 A的正惯性指数p=r=n,r为矩阵的秩,n为未知数个数 A的每一个特征值都大于0 ,D为可逆矩阵 A的全部顺序主子式大于0,即 ..
正定二次型与正定矩阵
文章目录二次型正定的定义半正定/(负)半负定/不定的定义二次型正定充要条件矩阵正定+正定矩阵的定义实对称矩阵正定的充要推论1推论2正定充要条件②半正定充要条件①半正定充要条件②负定充要条件Hesse矩阵延伸:n元函数的Hesse矩阵 二次型正定的定义 n元实二次型X′AXX'AXX′AX若满足:对RnR^nRn中任意非零列向量α\alphaα都有α′Aα>0\alp...
二次型
定义 含有nnn个变量x1,x2,⋯,xnx1,x2,⋯,xnx_1,x_2,\cdots,x_n的二次齐次函数 f(x1,x2,⋯,xn)=a11x21+a22x22+⋯+annx2n+2a12x1x2+2a13x1x3+⋯+2an−1,nxn−1xn(1)(1)f(x1,x2,⋯,xn)=a11x12+a22x22+⋯+annxn2+2a12x1x2+2a13x1x3+⋯+2an−1,nx...
多元函数极值 二次型 Hessian矩阵 正定矩形 二阶泰勒展开
二次型多元函数极值Hessian矩阵正定矩阵如何判断一个矩阵是否是正定的,负定的,还是不定的呢?一个最常用的方法就是顺序主子式。实对称矩阵为正定矩阵的充要条件是的各顺序主子式都大于零。当然这个判定方法的计算量比较大。对于实二次型矩阵还有一个判定方法:实二次型矩阵为正定二次型的充要条件是的矩阵的特征值全大于零。为负定二次型的充要条件是的矩阵的特征值全小于零,否则是不定的。多元函数极值的判定泰勒展开式.
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
临沂比较有名的男装品牌 呼伦贝尔市悦动网络科技有限公司怎么样? 呼伦贝尔中汇实业有限公司怎么样? 呼伦贝尔油玉不绝电子商务有限公司怎么样? 如何避免wps卡顿? 属鼠的男人找对象是属什么,属鼠的人和什么属相合 96年鼠的姻缘在哪年 属相相合年份运势提升 2024属鼠找对象属什么最佳 黑客攻击网站能报案吗 黑客攻击报案有用吗 微信群退出了怎么找回来 你有哪些网上聊天的规矩礼仪? 张淑秋说的互联网礼仪指的是什么? 你们觉得最基础的网络社交礼仪是什么? 网络道德礼仪是什么? 谈谈我们应该如何践行网络礼仪? 互联网基本礼仪规范有哪些?是张淑秋提出来的吗? 网络十大礼节是什么? 以网络信息技术为媒介的人际交往需要注意哪些礼仪 网络礼仪的介绍 在网络上,有哪些礼仪是中国网民普遍不够注意的? 应该如何践行网络礼仪? 什么是网络礼节?? 互联网礼仪的基本原则是什么? 什么是网络礼仪? 网络礼仪的基本原则是什么? 在网上交往的过程中我们要遵守什么 在上网时我们应该遵守哪些网络规则(2分) 网上礼仪的基本规则有哪些? 网络礼仪是什么,包括哪些礼仪 y开头的英文单词有哪些? 以y字母开头的英语单词,20个 y开头的英文单词 以y字母开头的英语单词有什么? y开头有深意的英语单词有哪些? 以字母“Y”开头的单词有哪些? Y开头的英文名都有什么? &quot;Y&quot;开头的单词有哪些,请列明中英文如上 &quot;Y&quot;开头的单词有哪些,请列明中英文 华为mate20充电很慢怎么办? y开头的单词 华为mate20充电速度很慢怎么办? 请问祛痘有什么好方法没?比如一些小偏方之类的。谢谢各位了 花盆中苔藓发黄的原因是什么? 苔藓植物可以吃吗 苔藓为什么被称为天然检测仪? 为什么蕨类植物和苔藓类植物适于生活在阴暗潮湿的环境 使湿台阶变绿的主要苔藓植物的生物学名称是什么 充电怎么显示? 手机充电时如何环形显示?