发布网友 发布时间:2022-04-20 06:47
共1个回答
热心网友 时间:2023-09-07 08:56
在自然科学、社会科学和工程技术的很多领域中,都不同程度地涉及到对不确定因素和对不完备(imperfect) 信息的处理。从实际系统中采集到的数据常常包含着噪声,不够精确甚至不完整。采用纯数学上的假设来消除或回避这种不确定性,效果往往不理想。反之,如果正视它对这些信息进行合适地处理,常常有助于相关实际系统问题的解决。
多年来,研究人员一直在努力寻找科学地处理不完整性和不确定性的有效途径。模糊集和基于概率方法的证据理论是处理不确定信息的两种方法,已应用于一些实际领域。但这些方法有时需要一些数据的附加信息或先验知识,,如模糊隶属函数、基本概率指派函数和有关统计概率分布等,而这些信息有时并不容易得到。
1982年波兰学者Z. Paw lak 提出了粗糙集理论——它是一种刻画不完整性和不确定性的数学工具,能有效地分析不精确,不一致(inconsistent)、不完整(incomplete) 等各种不完备的信息,还可以对数据进行分析和推理,从中发现隐含的知识,揭示潜在的规律。
粗糙集理论是建立在分类机制的基础上的,它将分类理解为在特定空间上的等价关系,而等价关系构成了对该空间的划分。粗糙集理论将知识理解为对数据的划分,每一被划分的集合称为概念。粗糙集理论的主要思想是利用已知的知识库,将不精确或不确定的知识用已知的知识库中的知识来(近似) 刻画。
该理论与其他处理不确定和不精确问题理论的最显著的区别是:它无需提供问题所需处理的数据集合之外的任何先验信息,所以对问题的不确定性的描述或处理可以说是比较客观的,由于这个理论未能包含处理不精确或不确定原始数据的机制,所以这个理论与概率论、模糊数学和证据理论等其他处理不确定或不精确问题的理论有很强的互补性.
粗糙集是一种较有前途的处理不确定性的方法,相信今后将会在更多的领域中得到应用. 但是,粗糙集理论还处在继续发展之中,正如粗糙集理论的创立人Z. Paw lak 所指出的那样,尚有一些理论上的问题需要解决,诸如用于不精确推理的粗糙逻辑(Rough logic) 方法,粗糙集理论与非标准分析(Nonstandard analysis) 和非参数化统计(Nonparametric statistics)等之间的关系等等. 将粗糙集与其它软计算方法(如模糊集,人工神经网络,遗传算法等) 相综合,发挥出各自的优点,可望设计出具有较高的机器智商(M IQ) 的混合智能系统(Hybrid Intelligent System),这是一个值得努力的方向.