问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

勾股数有哪些

发布网友 发布时间:2022-04-20 06:49

我来回答

5个回答

热心网友 时间:2022-05-13 02:48

常用的勾股数有:3、4、5;5、12、13;7、24、25;8、15、17;9、40、41等等。

勾股数,又名毕氏三元数 。勾股数就是可以构成一个直角三角形三边的一组正整数。依据的是勾股定理。勾股定理是人类早期发现并证明的重要数学定理之一。

勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。

据《周髀算经》中记述,公元前一千多年周公与商高论数的对话中,商高就以三四五3个特定数为例详细解释了勾股定理要素。

古埃及在公元前2600年的纸莎草就有(3,4,5)这一组勾股数,而古巴比伦泥板涉及的最大的一个勾股数组是(12709,13500,18541)。

扩展资料

勾股定理的证明

一、赵爽勾股圆方图证明法

中国三国时期赵爽为证明勾股定理作“勾股圆方图”即“弦图”,按其证明思路,其法可涵盖所有直角三角形,为东方特色勾股定理无字证明法。2002年第24届国际数学家大会(ICM)在北京召开。中国邮政发行一枚邮资明信片,邮资图就是这次大会的会标—中国古代证明勾股定理的赵爽弦图。

二、刘徽“割补术”证明法

中国魏晋时期伟大数学家刘徽作《九章算术注》时,依据其“割补术”为证勾股定理另辟蹊径而作“青朱出入图”。刘徽描述此图,“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂。开方除之,即弦也。”

其大意为,一个任意直角三角形,以勾宽作红色正方形即朱方,以股长作青色正方形即青方。将朱方、青方两个正方形对齐底边排列,再进行割补—以盈补虚,分割线内不动,线外则“各从其类”,以合成弦的正方形即弦方,弦方开方即为弦长。

参考资料来源:百度百科-勾股数

热心网友 时间:2022-05-13 04:06

1、常见组合:

3,4,5 : 勾三股四弦五

5,12,13 : 5·21(12)记一生(13)

6,8,10: 连续的偶数

2、特殊组合:

连续的勾股数只有3,4,5

连续的偶数勾股数只有6,8,10

勾股数,又名毕氏三元数 。勾股数就是可以构成一个直角三角形三边的一组正整数。勾股定理:直角三角形两条直角边a、b的平方和等于斜边c的平方(a²+b²=c²)。

扩展资料:

一、公式

a=m,b=(m^2 / k - k) / 2,c=(m^2 / k + k) / 2 ①

其中m ≥3

1、当m确定为任意一个 ≥3的奇数时,k={1,m^2的所有小于m的因子}

2、当m确定为任意一个 ≥4的偶数时,k={m^2 / 2的所有小于m的偶数因子}

二、常见组合套路

1、当a为大于1的奇数2n+1时,b=2n²+2n, c=2n²+2n+1。

实际上就是把a的平方数拆成两个连续自然数,例如:

n=1时(a,b,c)=(3,4,5)

n=2时(a,b,c)=(5,12,13)

n=3时(a,b,c)=(7,24,25) 

2、当a为大于4的偶数2n时,b=n²-1, c=n²+1

也就是把a的一半的平方分别减1和加1,例如:

n=3时(a,b,c)=(6,8,10)

n=4时(a,b,c)=(8,15,17)

n=5时(a,b,c)=(10,24,26)

n=6时(a,b,c)=(12,35,37)

参考资料来源:百度百科-勾股数

热心网友 时间:2022-05-13 05:41

勾股数又名毕氏三元数
凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数。
①观察3,4,5;5,12,13;7,24,25;…发现这些勾股数都是奇数,且从3起就没有间断过。计算0.5(9-1),0.5(9+1)与0.5(25-1),0.5(25+1),并根据你发现的规律写出分别能表示7,24,25的股和弦的算式。
②根据①的规律,用n的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间的两种相等关系,并对其中一种猜想加以说明。
③继续观察4,3,5;6,8,10;8,15,17;…可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用上述类似的探索方法,之间用m的代数式来表示它们的股合弦。
设直角三角形三边长为a、b、c,由勾股定理知a^2+b^2=c^2,这是构成直角三角形三边的充分且必要的条件。因此,要求一组勾股数就是要解不定方程x^2+y^2=z^2,求出正整数解。
例:已知在△ABC中,三边长分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1),求证:∠C=90°。此例说明了对于大于2的任意偶数2n(n>1),都可构成一组勾股数,三边分别是:2n、n2-1、n2+1。如:6、8、10,8、15、17,10、24、26…等。
再来看下面这些勾股数:3、4、5,5、12、13,7、24、25,9、40、41,11、60、61…这些勾股数都是以奇数为一边构成的直角三角形。由上例已知任意一个大于2的偶数可以构成一组勾股数,实际上以任意一个大于1的奇数2n+1(n>1)为边也可以构成勾股数,其三边分别是2n+1、2n2+2n、2n2+2n+1,这可以通过勾股定理的逆定理获证。
观察分析上述的勾股数,可看出它们具有下列二个特点:
1、直角三角形短直角边为奇数,另一条直角边与斜边是两个连续自然数。
2、一个直角三角形的周长等于短直角边的平方与短边自身的和。
掌握上述二个特点,为解一类题提供了方便。
例:直角三角形的三条边的长度是正整数,其中一条短直角边的长度是13,求这个直角三角形的周长是多少?
用特点1解:设这个直角三角形三边分别为13、x、x+1,则有:169+x2=(x+1)2,解得x=84,此三角形周长=13+84+85=182。
用特点2解:此直角三角形是以奇数为边构成的直角三角形,因此周长=169+13=182。
勾股数的通项公式:
题目:已知a^2+b^2=c^2,a,b,c均为正整数,求a,b,c满足的条件.
解答:
结论1:从题目中可以看出,a+b>c (1),联想到三角形的成立条件容易得出。
结论2:a^2=c^2-b^2=(c+b)*(c-b) (2)
从(2)中可以看出题目的关键是找出a^2做因式分解的性质,令X=c+b,Y=c-b
所以:a^2=X*Y,(X>Y,a>Y) (3)
首先将Y做分解,设Y的所有因子中能写成平方数的最大的一个为k=m^2,所以Y=n*m^2 (4)
又(3)式可知a^2=X*n*m^2 (5)
比较(5)式两边可以a必能被m整除,且n中不可能存在素数的平方因子,否则与(4)中的最大平方数矛盾。
同理可知a^2=Y*n'*m'^2 (6),X=n'*m'^2,且 n'为不相同素数的乘积
将(5)式与(6)式相乘得a^2=(m*m')^2*n'*n,(n,n'为不相同素数的乘积) (7)
根据(7)知n*n'仍然为平方数,又由于n',n均为不相同素数乘积知n=n'(自行证明,比较简单)
可知a=m'*m*n
c=(X+Y)/2=(n*m^2+n*m'^2)/2=n*(m^2+m'^2)/2
b=(X-Y)/2=n*(m'^2-m^2)/2
a=m*n*m'
[编辑本段]勾股数的常用套路
所谓勾股数,一般是指能够构成直角三角形三条边的三个正整数(a,b,c)。
即a^2+b^2=c^2,a,b,c∈N
又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个整数n得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c互质的勾股数组。
关于这样的数组,比较常用也比较实用的套路有以下两种:
1、当a为大于1的奇数2n+1时,b=2*n^2+2*n, c=2*n^2+2*n+1。
实际上就是把a的平方数拆成两个连续自然数,例如:
n=1时(a,b,c)=(3,4,5)
n=2时(a,b,c)=(5,12,13)
n=3时(a,b,c)=(7,24,25)
... ...
这是最经典的一个套路,而且由于两个连续自然数必然互质,所以用这个套路得到的勾股数组全部都是互质的。
2、当a为大于4的偶数2n时,b=n^2-1, c=n^2+1
也就是把a的一半的平方分别减1和加1,例如:
n=3时(a,b,c)=(6,8,10)
n=4时(a,b,c)=(8,15,17)
n=5时(a,b,c)=(10,24,26)
n=6时(a,b,c)=(12,35,37)
... ...
这是次经典的套路,当n为奇数时由于(a,b,c)是三个偶数,所以该勾股数组必然不是互质的;而n为偶数时由于b、c是两个连续奇数必然互质,所以该勾股数组互质。
所以如果你只想得到互质的数组,这条可以改成,对于a=4n (n>=2), b=4*n^2-1, c=4*n^2+1,例如:
n=2时(a,b,c)=(8,15,17)
n=3时(a,b,c)=(12,35,37)
n=4时(a,b,c)=(16,63,65)
... ...
========Edward补充========
对于N 为质因数比较多的和数时海可以参照其质因数进行 取相应的勾股数补充,即1个N会有多对的勾股数,例如:
n=9时(a,b,c)=(9,24,25)or (9,12,15) --------3* (3,4,5)
n=12时(a,b,c)= (12,35,37) or (12,16,20) ----- 4*(3,4,5)
=========ShangJingbo补充=======
还有诸如此类的勾股数,20、21、29;
119、120、169;
696、697、985;
4059、4060、5741;
23660、23661、33461;
137903 137904 195025
803760 803761 1136689
4684659 4684660 6625109
……
已有三千年研究历史的勾股定理还有研究的空间吗? 我用本文试探索。
勾 股 数
1. 定义:凡符合X^2+Y^2=Z^2公式的正整数值我们称之为勾股数。X和Y是直角边,Z是斜边。
2. 凡有公约数的勾股数我们称之为派生勾股数,例[30,40,50] 等;
3. 无公约数的勾股数,例[3,4,5];[8,15,17]等,我们称之为勾股数。全是偶数的勾股数必是派生勾股数,三个奇数不可能符合定义公式。因此,勾股数唯一的可能性是:
X和Y分别是奇数和偶数(偶数和奇数),斜边Z只能是奇数。
4. 勾股数具有以下特性:
斜边与偶数边之差是奇数,这个奇数只能是某奇数的平方数, 例1,9,25,49,……,至无穷大;
斜边与奇数边之差是偶数,这个偶数只能是某偶数平方数的一半, 例2,8,18,32,……,至无穷大;
5. 由以上定义我们推导出勾股公式:
X = P^2 + PQ (X等于P平方加PQ)
Y = Q^2/ 2 + PQ (Y等于二分之Q方加PQ)
Z = P^2 + Q^2 / 2 + PQ (Z等于P平方加二分之Q方加PQ)
6. 此公式涵盖了自然界的全部勾股数,包括派生勾股数。
7. 用此公式很容易导出全部勾股数,例如2000以内的勾股数计有320组,(不含派生勾股数)。最大的一组是 [315, 1972, 1997]
8. 斜边是1105和1885的勾股数各有4组:
[47,1104,1105] [264,1703,1105] [576,943,1105] [744,817,1105];
[427,1836,1885] [1003,1596,1885] [1643,924,1885] [1813,516,1885];
9. 以任意奇数代入P ,任意偶数代入Q ,即可得到唯一一组勾股数。
例如P = 5 ,Q = 8 ,得到
X = 25 + 5×8 = 65
Y = 32 + 5×8 = 72
Z = 25 + 32 + 5×8 = 97
10. 它极清楚地显示出了斜边与偶数直角边之差是奇数的平方,斜边与奇数直角边之差是偶数平方值的一半,而斜边则是由奇数的平方与偶数平方的一半和此奇数与偶数之积三项之和所构成。
11. 当P与Q有公约数时,例如9与12 ,再例如21与28等,推导出来的是派生勾股数;
当P与Q无公约数时,例如9 与8 ,再例如21与16等,推导出来的是勾股数;
12. 不存在不符合本公式的勾股数。例如有人奉献趣味勾股数[88209,90288,126225],它实际 是个派生勾股数,它是[297,304,425]乘297倍而成,它是由P = 11和Q = 16导出。
13. 本文所提供的公式是依据本文第4条的两条勾股数特性规律推导而出,但是它可以与六百年前印度婆罗门笈多公式相互推导。
14. 依据本公式勾股定理可从正整数拓展到负整数。在笛卡尔座标图上,勾股三角形可以在更大的位置上显现。
[编辑本段]勾股数公式及证明
a=2mn
b=m^2-n^2
c=m^2+n^2
证:
假设a^2+b^2=c^2,这里研究(a,b)=1的情况(如果不等于1则(a,b)|c,两边除以(a,b)即可)
如果a,b均奇数,则a^2 + b^2 = 2(mod 4)(奇数mod4余1),而2不是模4的二次剩余,矛盾,所以必定存在一个偶数。不妨设a=2k
等式化为4k^2 = (c+b)(c-b)
显然b,c同奇偶(否则右边等于奇数矛盾)
作代换:M=(c+b)/2, N=(c-b)/2,显然M,N为正整数
现在往证:(M,N)=1
如果存在质数p,使得p|M,p|N, 那么p|M+N(=c), p|M-N(=b), 从而p|c, p|b, 从而p|a,这与(a,b)=1矛盾
所以(M,N)=1得证。
依照算术基本定理,k^2 = p1^a1 * p2^a2 * p3^a3 * ...,其中a1,a2...均为偶数,p1,p2,p3...均为质数
如果对于某个pi,M的pi因子个数为奇数个,那N对应的pi因子必为奇数个(否则加起来不为偶数),从而pi|M, pi|N,(M,N)=pi>1与刚才的证明矛盾
所以对于所有质因子,pi^2|M, pi^2|N,即M,N都是平方数。
设M = m^2, N = n^2
从而有c+b = 2m^2, c-b = 2n^2,解得

热心网友 时间:2022-05-13 07:32

勾股数又名毕氏三元数 。勾股数就是可以构成一个直角三角形三边的一组正整数。
常见的特殊勾股数:3 4 5;5 12 13; 6 8 10;8,15,17;9 12 15;7 24 25;9 40 41;10 24 26;11 60 61;12 16 20;12 35 37;13 84 85;14 48 50;15 20 25;15 36 39;15 112 113;16 30 34;16 63 65;18 24 30;18 80 82;20 21 29;20 48 52;20 99 101;21 28 35;21 72 75;22 120 122;24 32 40;24 45 51;24 70 74;25 60 65;27 36 45;28 45 53;30 40 50;30 72 78;32 60 68;33 44 55;33 56 65;35 84 91;36 48 60;36 77 85;39 52 65;39 80 89;40 42 58;40 75 85 ;40 96 104;42 56 70 ; 45 60 75 ; 48 55 73 ; 48 64 80 ; 48 90 102 ; 51 68 85 ;54 72 90 ; 56 90 106 ; 57 76 95 ; 60 63 87 ; 60 80 100 ;60 91 109 ; 63 84 105 ; 65 72 97 ; 66 88 110 ; 69 92 115 ;72 96 120 ; 75 100 125 ; 80 84 116等等。
勾股数满足勾股定理。
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

热心网友 时间:2022-05-13 09:40

勾股数指的是组成一个直角三角形的三条边长,三条边长都为正整数,例如直角三角形的两条直角边为a和b,斜边为c,那么两条直角边a的平方+b的平方等于斜边c的平方,那么这一组数组就叫做勾股数。一般把较短的直角边称为勾,较长直角边称为股,而斜边则为弦。

结合勾股数创造了勾股定理,是为了解不定方程的所有整数解而创造的定律。勾股定理是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。

扩展资料

勾股数的特点:

1、满足勾股数的直角三角形的两条直角边为一个奇数,一个偶数,同时斜边为奇数。

2、连续的勾股数只有3,4,5这三个正整数。

3、连续的偶数勾股数只有6,8,10这三个整数。

参考资料来源:百度百科-勾股数

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
一个成功女人背后的五种男人 为什么猫咪爱睡床边 事业单位工作人员如何正常增加薪级工资 红旗Linux极致的体验新世界红旗linux怎么样 工龄33年10个月+薪级工资是多少? 15岁,体重70kg身高175cm超重了吗 海南三亚 N70音乐版 5310卖多少钱? ...有谁知道怎么办理港澳SaSa,卓悦,万宁的会员卡呢?拜托拜托 _百度... 海南的朵唯手机都在哪些地方有卖?王者天创卖的朵唯手机都是真货吗? 我今年17岁。身高175CM,体重70公斤。弹跳差不多50CM。跳远2.35米左右... 勾股数有几种 常用的勾股数有哪些 直角边为11的勾股数组 一组勾股数11开头的,后面两个数是什么 其中一个是11的勾股数有哪些 含有11的勾股数 初二数学常用的勾股数有哪些 包含11的勾股数有哪些? 11与几能组成勾股数 请问11与几,几能组成勾股数? 勾股数11开头的。 与"11"有关的勾股数...... 包含11的勾股数有哪些? 11的勾股数是多少 高筋面粉可以炸油条吗 你好,我想问一下,就是关于.aee后缀文件的图片,如何打开的问题,你说移动到原来加密的分区, 为什么区分不同状态的人际关系? 学校内的人际关系可分为哪三种? 人际交往可以分为哪些形式? 人际关系状态有几种 人际可以分为几个层次? 有哪些勾股数 数学勾股定理常用的勾股数 11的勾股定理 告诉我十个以上的勾股数 以11开头的勾股数 安装的英文是什么? 软件安装是一个什么样的过程 系统怎么安装 如何正确安装软件? 什么叫安装? 怎样安装 系统安装有几种方法 软件安装的流程是什么? 软件怎么安装 安装和下载的区别? 如何安装系统 如何安装和卸载软件 安装什么意思 安装软件时应该注意哪些事项 对越自卫反击战我军特种兵之王txt全集下载