勾股定理的逆定理,为什么不能这样反推a
发布网友
发布时间:2022-04-29 17:58
我来回答
共1个回答
热心网友
时间:2023-10-27 05:57
勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。最长边所对的角为直角。
证法:已知在△ABC中,a²+b²=c²,求证△ABC是直角三角形
证明:做任意一个Rt△A'B'C',使其直角边B'C'=a,A'C'=b,∠C'=90°。设A'B'=c'
在Rt△A'B'C'中,由勾股定理得,A'B‘²=B'C'²+A'C'²=a²+b²=c’²
一∵a²+b²=c²,∴c‘=c
在△ABC和A'B'C'中,∵AB=A'B',BC=B'C',AC=A'C',∴△ABC≌△A'B'C'
∴∠C=∠C'=90°
运用:是判断三角形为锐角或钝角的一个简单的方法。
若c为最长边,且a²+b²=c²,则△ABC是直角三角形。如果a²+b²>c²,则△ABC是锐角三角形。如果a²+b²<c²,则△ABC是钝角三角形。
热心网友
时间:2023-10-27 05:57
勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。最长边所对的角为直角。
证法:已知在△ABC中,a²+b²=c²,求证△ABC是直角三角形
证明:做任意一个Rt△A'B'C',使其直角边B'C'=a,A'C'=b,∠C'=90°。设A'B'=c'
在Rt△A'B'C'中,由勾股定理得,A'B‘²=B'C'²+A'C'²=a²+b²=c’²
一∵a²+b²=c²,∴c‘=c
在△ABC和A'B'C'中,∵AB=A'B',BC=B'C',AC=A'C',∴△ABC≌△A'B'C'
∴∠C=∠C'=90°
运用:是判断三角形为锐角或钝角的一个简单的方法。
若c为最长边,且a²+b²=c²,则△ABC是直角三角形。如果a²+b²>c²,则△ABC是锐角三角形。如果a²+b²<c²,则△ABC是钝角三角形。
热心网友
时间:2023-10-27 05:57
勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。最长边所对的角为直角。
证法:已知在△ABC中,a²+b²=c²,求证△ABC是直角三角形
证明:做任意一个Rt△A'B'C',使其直角边B'C'=a,A'C'=b,∠C'=90°。设A'B'=c'
在Rt△A'B'C'中,由勾股定理得,A'B‘²=B'C'²+A'C'²=a²+b²=c’²
一∵a²+b²=c²,∴c‘=c
在△ABC和A'B'C'中,∵AB=A'B',BC=B'C',AC=A'C',∴△ABC≌△A'B'C'
∴∠C=∠C'=90°
运用:是判断三角形为锐角或钝角的一个简单的方法。
若c为最长边,且a²+b²=c²,则△ABC是直角三角形。如果a²+b²>c²,则△ABC是锐角三角形。如果a²+b²<c²,则△ABC是钝角三角形。
热心网友
时间:2023-10-27 05:57
勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。最长边所对的角为直角。
证法:已知在△ABC中,a²+b²=c²,求证△ABC是直角三角形
证明:做任意一个Rt△A'B'C',使其直角边B'C'=a,A'C'=b,∠C'=90°。设A'B'=c'
在Rt△A'B'C'中,由勾股定理得,A'B‘²=B'C'²+A'C'²=a²+b²=c’²
一∵a²+b²=c²,∴c‘=c
在△ABC和A'B'C'中,∵AB=A'B',BC=B'C',AC=A'C',∴△ABC≌△A'B'C'
∴∠C=∠C'=90°
运用:是判断三角形为锐角或钝角的一个简单的方法。
若c为最长边,且a²+b²=c²,则△ABC是直角三角形。如果a²+b²>c²,则△ABC是锐角三角形。如果a²+b²<c²,则△ABC是钝角三角形。
热心网友
时间:2023-10-27 05:57
勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。最长边所对的角为直角。
证法:已知在△ABC中,a²+b²=c²,求证△ABC是直角三角形
证明:做任意一个Rt△A'B'C',使其直角边B'C'=a,A'C'=b,∠C'=90°。设A'B'=c'
在Rt△A'B'C'中,由勾股定理得,A'B‘²=B'C'²+A'C'²=a²+b²=c’²
一∵a²+b²=c²,∴c‘=c
在△ABC和A'B'C'中,∵AB=A'B',BC=B'C',AC=A'C',∴△ABC≌△A'B'C'
∴∠C=∠C'=90°
运用:是判断三角形为锐角或钝角的一个简单的方法。
若c为最长边,且a²+b²=c²,则△ABC是直角三角形。如果a²+b²>c²,则△ABC是锐角三角形。如果a²+b²<c²,则△ABC是钝角三角形。
热心网友
时间:2023-10-27 05:57
勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。最长边所对的角为直角。
证法:已知在△ABC中,a²+b²=c²,求证△ABC是直角三角形
证明:做任意一个Rt△A'B'C',使其直角边B'C'=a,A'C'=b,∠C'=90°。设A'B'=c'
在Rt△A'B'C'中,由勾股定理得,A'B‘²=B'C'²+A'C'²=a²+b²=c’²
一∵a²+b²=c²,∴c‘=c
在△ABC和A'B'C'中,∵AB=A'B',BC=B'C',AC=A'C',∴△ABC≌△A'B'C'
∴∠C=∠C'=90°
运用:是判断三角形为锐角或钝角的一个简单的方法。
若c为最长边,且a²+b²=c²,则△ABC是直角三角形。如果a²+b²>c²,则△ABC是锐角三角形。如果a²+b²<c²,则△ABC是钝角三角形。