如何解释无限个无穷小的和不一定为无穷小 知乎
发布网友
发布时间:2022-05-16 14:02
我来回答
共2个回答
热心网友
时间:2023-10-24 21:43
很简单。
我们随便画一个函数y,然后随便找个区间在边缘作两条垂线段,这时形成了一个曲边梯形,我们来求它的面积。
在区间内接一些矩形,求这些矩形的面积和。
在矩形数量为无穷大的时候,矩形面积为无穷小,而曲边梯形的面积正好是这些矩形的面积和,这些矩形的面积和又正好如问题说,是无限个无穷小的和。
简单表达:
∫[a,b]ydx
dx是无穷小,∫表示把这些无穷小加起来
其实就是在求定积分,曲边梯形是一定有面积的,所以无限个无穷小的和不一定为无穷小。
热心网友
时间:2023-10-24 21:44
n个1/n的和等于1,当n趋于无穷大时