微分的加法性质怎么证明?
发布网友
发布时间:2022-05-13 10:57
我来回答
共1个回答
热心网友
时间:2023-10-08 22:23
微分形式的一个优点就是能做外微分 运算。 比如ω=α(x_1,...x_n)dx_{i1}∧dx_{i2}∧...dx_{ir}是一个r次微分形式, 那么dω=dα∧dx_{i1}∧dx_{i2}∧...dx_{ir}. 这就把一个r次微分形式映到了r+1次微分形式。换言之,
我们有映射d: A^r(T^*)→A^{r+1}(T^*). 这个映射称为外微分。
易知两次外微分的复合等于零, 即dd=0,即poincare(庞加莱)引理. 一个微分形式ω如果满足dω=0, 我们就称其为闭形式。 如果存在另一微分形式γ, 使得ω=dγ, 我们就称其为恰当形式。 利用dd=0这一条件,我们就得到所谓的DeRham复形, 由这个复形,就导出了所谓的DeRham上同调, 它就是闭形式生成的向量空间商掉恰当形式以后得到的商空间。
楔积法则:d(x∧y)=dx∧y+(-1)^(degx)*x∧dy.
此外, 外微分运算还满足牛顿-莱布尼兹公式, 即对区域边界某外微分的积分等于对区域内该外微分的微分的积分。是高斯公式,斯托克斯公式的概括和总结,是单变量微积分中牛顿-莱布尼兹公式在多变量中的推广。