发布网友 发布时间:2022-05-13 10:18
共1个回答
热心网友 时间:2023-08-10 06:35
三次根号下x在x=0处不可导 ,正常在Y=X^(1/3)非零点求导,得到导数为y=(1/3)*X^(-2/3),这个函数在零点的值是无穷大。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则其在这一点可导,否则为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
可导与偏导:
当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。
此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。
按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。