发布网友 发布时间:2022-04-21 21:46
共1个回答
热心网友 时间:2023-07-02 05:38
点到直线的距离常用公式:
设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(Xo,Yo),则点 P 到直线 L 的距离为:
d=│AXo+BYo+C│ / √(A²+B²)。
点到直线距离是连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度。目标在于通过对点到直线距离公式的推导,提高学生对数形结合的认识,加深用“计算”来处理“图形”的意识。
扩展资料
距离=|kx1-y1+b|/√[k²+(-1)²]
点到直线距离公式的推导如下:
对于点P(x0,y0)
作PQ垂直直线Ax+By+C=0于Q
作PM平行Y轴,交直线于M;作PN平行X轴,交直线于N
设M(x1,y1)
x1=x0,y1=(-Ax0+C)/B.
PM=|y0-y1|=|y0+(Ax0+C)/B|=|(Ax0+By0+C)/B|
同理,设N(x2,y2).
y2=y0,x2=(-By0+C)/A
PN=|(Ax0+By0+C)/A|
PM、PN为直角三角形PMN两直角边,PQ为斜边MN上的高
PQ=PM×PN/MN=PM×PN/√(PM²+PN²)=|Ax0+By0+C|/√(A²+B²)
参考资料:百度百科——点到直线距离