神经网络的准确率是怎么计算的?
发布网友
发布时间:2022-05-14 19:49
我来回答
共2个回答
热心网友
时间:2023-10-27 01:14
其实神经网络的准确率的标准是自己定义的。
我把你的例子赋予某种意义讲解:
1,期望输出[1 0 0 1],每个元素代表一个属性是否存在。像着4个元素分别表示:是否肺炎,是否肝炎,是否肾炎,是否胆炎,1表示是,0表示不是。
2,你的神经网络输出必定不可能全部都是输出只有0,1的输出。绝大部分是像[ 0.9968 0.0000 0.0001 0.9970]这样的输出,所以只要输出中的某个元素大于一定的值,例如0.7,我们就认为这个元素是1,即是有某种炎。否则为0,所以你的[ 0.9968 0.0000 0.0001 0.9970]可以看成是[1,0,0,1],。
3,所以一般神经网络的输出要按一定的标准定义成另一种输出(像上面说的),看调整后的输出和期望输出是否一致,一致的话算正确,不一致算错误。
4,用总量为n的检验样本对网络进行评价,输出调整后的输出,统计错误的个数,记为m。
所以检验正确率可以定义为n/m。
热心网友
时间:2023-10-27 01:14
自己定义吧,根据用处自己设定函数,例如MSE(mean square error)之类的,MSE就是各输出与期望方差之和除以输出节点数。