最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题TAG最新视频文章视频文章2视频2tag2tag3文章专题问答问答2 文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
怎么明智地问问题 怎么用第三人称写作 怎么计算你的成绩 怎么跳出思维定式 怎么写罗马数字 怎么在沉闷的课堂上集中精力 怎么成为科学家 怎么求半圆的面积 怎么直视别人的眼睛 怎么计算平均速率 怎么通过电子邮件向你的导师要推荐信 怎么使用勾股定理 怎么创立一个调查 怎么学习普通话 怎么把英语学得像一个以英语为母语的人 怎么消化阅读的内容 怎么给演讲稿写结尾 怎么计算百分比变化 怎么高效工作 怎么做异分母分数加法 怎么因式分解二次多项式 怎么写一篇自我介绍 怎么让鸡蛋完好无损地坠落 怎么获得绿卡 怎么用图示展示一个二元一次方程 怎么提高对细节的关注 怎么将秒转换成分钟 如何区分使用You're和Your 怎么做家庭作业 怎么领导讨论 怎么计算百分数 怎么给朋友写信 怎么测量速度 怎么把自己变成一个作家 怎么学习汉语 怎么创建学习指南 怎么使用powerpoint制作幻灯片 怎么通过应聘面试 怎么计算平均速度 怎么画龙珠z
问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501
怎么得出一条切线的等式
2020-03-06 21:44:10 责编:小OO

转动惯量的计算公式:r^2dm的积分,这道题里面dm=λdl,λ是线密度,λ=m/2兀R,可以类比体密度公式,dl是细圆环的微元,积分之后就是细圆环的周长2兀R,化简整理得mR^2

一条曲线的切线就是一条和这个曲线只有一个交点的直线。要找出这条线的方程式,你需要找出该切点上曲线的斜率。这是需要微积分才办得到的。然后以点斜式形式写出切线的方程。下面的文章解释一下步骤。

(1) (2) 的取值范围是 (1) 由 的图象过点 ,可知 ,得 . …………1分又∵ ,由题意知函数 在点 处的切线斜率为 ,∴ 且 ,即 且 ,解得 ……5分∴ . …………6分(2) 由 恒成立,得 恒成立,令 ,则 . …………8分令 ,则 , ,…11分当且仅当 ,即 时, . ………

第1步:曲线可以用函数表达。

1.单调性问题 研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数

得出该函数的导数,以得出斜率方程。

这类题型一般解法: 第一步,判断点是不是在圆上 第二步,在圆上的话,计算圆心以及该点所连直线的斜率K1,所求切线的斜率K2满足等式K1*K2=-1(因为它们有垂直关系),计算得到了K2,根据该斜率以及已知的点计算切线的方程y-y0=k2(x-x0) 如果点

最简单的就是链式规则(幂规则),每一项都乘以其次数,然后次数再减一,以得到其导数。

设圆的方程是(x+a)^2+(y+a)^2=r^2 在设以知点是(m,n),切点是(t,s),作图可得: (t-a)^2+(s-b)^2=r^2 根号[(m-a)^2+(n-b)^2]-根号[(m-t)^2+(n-s)^2]=r 两个方程,而且只有t,s两个未知量,可求出t,s 因为圆的切线方程过(m,n),(t,s), 所以,

比如方程f(x) = x3 + 2x2 + 5x + 1,导数为 f'(x) = 3x2 + 4x + 5

可以把这个点的坐标代入曲线的方程中,如果等式成立,说明这个点在曲线上,第一种理解方式比较合适,如果等式不成立,说明这个点不在曲线上,第二种理解方式比较合适;但是,无论采取哪一种理解方式,这个点必定是曲线的一条切线上的一点(如果

对于 f(x) = (2x+5)10 + 2*(4x+3)5 ,则导数为 f'(x) = 10*2*(2x+5)9 + 2*5*4*(4x+3)4 = 20*(2x+5)9 + 40*(4x+3)4。

直线与曲线相切。那么曲线在切点的斜率k1=直线斜率k2。曲线在切点的斜率可以对曲线求导,得到导函数,进而得到切线斜率。而直线斜率可以直接得到。然后就得到一个等式,最终得到要求的未知量。相切的充要条件是,直线方程与曲线方程组成的方程组

第2步:你会得到切点的坐标。

这叫等比定理。 令a:b=c:d=k(k为常数)。 则a=kb,c=kd. 则(a+c):(b+d)=k(b+d):(b+d)=k. so连等式成立。

把横坐标代入导数方程,得到这点的斜率。

从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角。 如图中,切线长AC=AB。 ∵∠ABO=∠ACO=90° BO=CO=半径 AO=AO公共边 ∴RtΔABO≌RtΔACO(H.L) ∴AB=AC ∠AOB=∠AOC ∠OAB=∠OAC 切线长定理推论:圆的外接四边形的

比如 f'(x) = 3x2 + 4x + 5 , (2,27)

函数 y=f(x) 其图象上有一点 设为a(x0 , y0) 过点a(x0 , y0)在曲线y=f(x)的斜率是函数y=f(x)在a(x0 , y0)处的导数即f'(X0). 1)首先 我们回忆一下初中的知识 怎样确定一条直线 可以用"点斜式"---y=kx+b 如果知道斜率k 和一点(x0 ,y0)将k,(x0 ,y0)

处的斜率,就是 f'(2) = 3(2)2 + 4(2) + 5 = 25

设切点是P(x0,y0),已知点是Q。则可以得到①导数求出来的斜率;②由PQ得到的斜率,两者相等,③转化为参数和x0的等式;④系数分离,得到:参数=G(x0),则:G(x0)必须有三解,所以:参数在G(x0)的极小值和极大值之间

第3步:这个斜率也是切线的斜率。

设已知园的方程为:(x-a)²+(y-b)²=R²;其中圆心(a,b),半径为R均为已知数; 再设过已知点M(m,n)的切线方程为:y=k(x-m)+n,即kx-y-mk+n=0..①; 且(m-a)²+(n-b)²>R²,即点M(m,n)在园外。 那么圆心(a,b)

现在有斜率和切点了,因此可以写出点斜式的切线方程,或y - y1 = m(x - x1)

设切点为(x0,x0^2) f(x)=x^2,则f'(x)=2x f‘(x0)=2x0=4 则:x0=2 所以,切点坐标为(2,4) 点斜式写出切线方程:y-4=4(x-2) 整理得:y=4x-4 祝你开心!希望能帮到你,如果不懂,请Hi我,祝学习进步!O(∩_∩)O

点斜式中, m

此问题可转化为:是否存在一个函数,该函数的某3条切线可交于一点。设这三条直线的方程为:y=f‘(a1)x+b1 ;y=f’(a2)x+b2;y=f'(a3)x+b3 两两联立该3条直线,可解出三个解,但三个解其实是相等的,再利用横坐标相等于纵坐标相等,两两建立等式。只

就是斜率,(x1,y1)

教你一法,导数法,高考经常用到,很有用的。 P点可以是曲线上的点如图的求法,都是讨论斜率存在的情况,P点也可以不是曲线上的点,此时利用点斜式,点为P点,斜率为曲线在切点的导数。

是坐标,本例中方程为 y - 27 = 25(x - 2)

从你计算看,好像是那样的,但是,仔细分析,软件计算只是给出一个符合不等式的一个值。你的算式较复杂,看不出来,请看下面的例子: >> syms s r a >> r=solve('a^2-r*s>0','r') r = (a^2 - 1)/s 把r代回得:1>0,对吧 >> r=solve('a^2-r*s

第4步:如果有相关提示的话,你可能需要转换为另外的形式,才能得到正确的答案。

这道题目先选取的是一个未知点 所以得到的是一组切线方程 你也可以看作是任意点的切线方程 再把实际要算的点代入就行了

扩展阅读,以下内容您可能还感兴趣。

求圆外一点到圆上的切线方程

这类题型一般解法:

第一步,判断点是不是在圆上

第二步,在圆上的话,计算圆心以及该点所连直线的斜率K1,所求切线的斜率K2满足等式K1*K2=-1(因为它们有垂直关系),计算得到了K2,根据该斜率以及已知的点计算切线的方程y-y0=k2(x-x0)

如果点不在圆上,先假设切线方程是y-y0=k(x-x0)其中K是未知数,待解,把该切线方程与圆的方程联立,因为是切线,所以两个方程有一个且有一个交点(也就是切点),根据伟达定理,一个解的情况下b^2-4ac=0,由这个关系式一般就可以解出所要求的K

常规题型,注意总结

过已知圆外一点的圆的切线方程怎么求 有公式否?

设圆的方程是(x+a)^2+(y+a)^2=r^2

在设以知点是(m,n),切点是(t,s),作图可得:

(t-a)^2+(s-b)^2=r^2

根号[(m-a)^2+(n-b)^2]-根号[(m-t)^2+(n-s)^2]=r

两个方程,而且只有t,s两个未知量,可求出t,s

因为圆的切线方程过(m,n),(t,s),

所以,可求得圆的切线方程(两点式).

可推导出公式.

一曲线过某点的切线方程可以理解为:该点在曲线上再求切线方程。和该点只是在曲线的一条切线上再求方程。

可以把这个点的坐标代入曲线的方程中,如果等式成立,说明这个点在曲线上,第一种理解方式比较合适,如果等式不成立,说明这个点不在曲线上,第二种理解方式比较合适;但是,无论采取哪一种理解方式,这个点必定是曲线的一条切线上的一点(如果曲线的方程在其定义域内处处可导,或去掉有限个点处处可导,可以保证切线存在),与这个点是否在曲线上没有必然联系,因此采取哪一种理解方式均是可以的。

直线与曲线相切由此可以得出什么结论?

直线与曲线相切。

那么曲线在切点的斜率k1=直线斜率k2。

曲线在切点的斜率可以对曲线求导,得到导函数,进而得到切线斜率。

而直线斜率可以直接得到。

然后就得到一个等式,最终得到要求的未知量。

相切的充要条件是,直线方程与曲线方程组成的方程组有且只有一个实数根。

切线参数方程怎么得出的,还有截距

切线的截距式方程与一般直线的截距式相同都是x/a+y/b=1的形式。

声明:本文由用户 邪少1 上传分享,本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。TEL:177 7030 7066 E-MAIL:11247931@qq.com

显示全文
专题微软推出AI新算法,能够加快旧照片修复效率微软推出AI新算法,能够加快旧照片修复效率专题2022年的假期安排出炉,快来一起看看吧2022年的假期安排出炉,快来一起看看吧专题骑手摔猫引发热议,结果被永久封号骑手摔猫引发热议,结果被永久封号专题张一鸣身价594亿美元超腾讯马化腾,成中国互联网首富张一鸣身价594亿美元超腾讯马化腾,成中国互联网首富专题AI打造童话世界,引领科技生活AI打造童话世界,引领科技生活专题特斯拉公司CEO马斯克,给大众高管传授电动汽车经验特斯拉公司CEO马斯克,给大众高管传授电动汽车经验专题网友爆料蚂蚁森林未种植梭梭,官方辟谣网友爆料蚂蚁森林未种植梭梭,官方辟谣专题AI是否拥有著作权,进入人们的视野AI是否拥有著作权,进入人们的视野专题Twitter股价跌至超10%,创造近 6个月最大跌幅Twitter股价跌至超10%,创造近 6个月最大跌幅专题关于未来人工智能发展的三大预测关于未来人工智能发展的三大预测专题微博新增“炸毁”评论功能:只对自身个人隐藏微博新增“炸毁”评论功能:只对自身个人隐藏专题官方回应解决屏蔽网址链接等问题官方回应解决屏蔽网址链接等问题专题B站上线童年动画专区:重温童年经典B站上线童年动画专区:重温童年经典专题AI审美开始对我们的生活评头论足,影响着我们个性化审美AI审美开始对我们的生活评头论足,影响着我们个性化审美专题韩国电信 KT 对“网络瘫痪事件”正式道歉韩国电信 KT 对“网络瘫痪事件”正式道歉专题网约车车内监控视频引发热议,司机拒逆行遭表扬网约车车内监控视频引发热议,司机拒逆行遭表扬专题抖音直播开展打击低俗、不良价值观内容行动抖音直播开展打击低俗、不良价值观内容行动专题人脸识别AI技术,从梦想走进生活人脸识别AI技术,从梦想走进生活专题王小川告别搜狗,将进入医疗健康领域王小川告别搜狗,将进入医疗健康领域专题部分网约车平台开展非法营运,交通运输部等五部门联合约谈部分网约车平台开展非法营运,交通运输部等五部门联合约谈专题软银成立30亿美元,用来投资拉美科技公司软银成立30亿美元,用来投资拉美科技公司专题多家互联网集团取消大小周,小鹏汽车每天工作8小时多家互联网集团取消大小周,小鹏汽车每天工作8小时专题AI防“疫”,人工智能发挥了多少作用?AI防“疫”,人工智能发挥了多少作用?专题段永平回应“重出江湖联合OV造车”绝不会发生段永平回应“重出江湖联合OV造车”绝不会发生专题AI助力精准防控,帮助病例筛查、药物研发AI助力精准防控,帮助病例筛查、药物研发专题外卖骑手为消差评拿砖上门被刑拘,结果顾客没评论外卖骑手为消差评拿砖上门被刑拘,结果顾客没评论专题分析师认为马斯克将凭SpaceX成首位万亿富豪分析师认为马斯克将凭SpaceX成首位万亿富豪专题人脸识别技术应用应该刹刹车,划定好边界人脸识别技术应用应该刹刹车,划定好边界专题知名游戏主播山泥若二审宣判,被判刑3年并处罚金5万元知名游戏主播山泥若二审宣判,被判刑3年并处罚金5万元专题公租房小区被曝,超过10万元的豪车拒进公租房小区被曝,超过10万元的豪车拒进专题高中数学不等式教案专题数学中cos是什么意思专题真分式拆成部分和专题怎么解不等式专题对数的创始人是苏格兰数学家纳皮尔专题数学中c代表什么专题对称轴公式专题切线判定定理专题利用二次函数求最大利润专题曲线在点处的切线方程专题曲线外一点的切线方程专题空间曲线在某点的切线方程专题空间曲线切线方程公式专题高数曲线在某点的切线方程专题点到曲线的切线方程专题高数求曲线的切线方程专题双曲线在某点的切线方程专题在某点过某点的切线方程专题过某点的切线方程怎么求专题园的一般方程专题